e
Reliable evaluation in reinforcement learning

Reliable evaluation in reinforcement learning

Olivier Sigaud

Sorbonne Université
http://people.isir.upmc.fr/sigaud




Reliable evaluation in reinforcement learning
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Outline

Evaluation issues in deep reinforcement learning
Using appropriate statistical tests

Better metrics to compare two algorithms
Hyper-parameter tuning, performance comparisons

Basics about the computational neuroscience side of RL




e
Reliable evaluation in reinforcement learning

Introduction: Evaluation issues in RL

Various research goals

Exploratory research: reach beyond frontiers, reveal new phenomena
Theoretical research: prove some properties
Empirical research: establish some properties from experience

Empirical research requires a strong empirical methodology

vVvyVvVvyyepy

When results are stochastic, need to use several seeds and aggregate

Boutbhillier, X., Laurent, C., and Vincent, P. (2019) Unreproducible research is reproducible. In International Conference on
Machine Learning, pages 725-734. PMLR

Patterson, A., Neumann, S., White, M., and White, A. (2023) Empirical design in reinforcement learning. arXiv preprint
arXiv:2304.01315
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Introduction: Evaluation issues in RL

Insufficient number of seeds (common practices)
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> With heavier environments, one cannot run enough seeds

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C., and Bellemare, M. (2021) Deep reinforcement learning at the edge of
the statistical precipice. Advances in neural information processing systems, 34:29304-29320
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Introduction: Evaluation issues in RL

Insufficient number of seeds: the danger
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» Without enough seeds, one may wrongly conclude to superiority of a method
over another

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2018) Deep reinforcement learning that matters.

In Mcllraith, S. A. and Weinberger, K. Q., editors, Proceedings of the Thirty-Second AAAI Conference on Atrtificial Intelligence,
pp. 3207-3214. AAAI Press
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Introduction: Evaluation issues in RL

Poor reporting practices

== Reported
=== DER
OTR
s CURL
DrQ
= DrQ(e)
SPR

Fraction of runs

M

|

L wﬂﬂ” N

.2 0.3 0.4 0.5 01 02 03 04 01 o0z 03 04
Median Human Normalized Score 95% Confidence Interval

100 runs 50 runs 25 runs 10 runs 5 runs 3 runs
|

Authors generally overestimate their method
Authors generally publish point estimates, they should publish interval estimates
Reasons for overestimation: selection of seeds, hyperparam overfitting
Using a seen maximum is a very bad practice. Can be an outlier.
More problems when comparing to competitors (fair tuning, etc.)

Note that apart from the pink, the spread looks Gaussian
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Introduction: Evaluation issues in RL

General remarks

» The RL research community is lead by Big Tech companies

\4

Massive use of more and more difficult benchmarks

P> More focus on improvements and fancy results than on analysis and
understanding

» RL algorithms are slowly moving towards being readily applicable to real-world
tasks

» But methodological aspects and understanding are left behind

» This class: start from good practices

7/ 46
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Statistical
tests
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Statistical tests

Introduction: the problem

-2 ) T
Usually, RL is stochastic (in the policy and/or in the environment)

Two episodes can give different results

>
>
> A superiority in data can be due to chance
> Need to rigorously compare two algorithms
>

Statistical tests are meant to provide this rigor
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Statistical tests

Statistical tests: the framework

v

One wants to compare the (true) central performances (mean or median) p1, 12
of two algorithms

The null hypothesis Ho : 1 — p2 = 0 algorithms perform the same
Alternative hypothesis Hq : |1 — p2| > 0 one algorithm is better
Given a set of realizations, we observe Z1,Z2 (empirical central performances)

With what confidence can we reject the null hypothesis?

vVvyYyYyyvyy

The confidence level cannot be 100%, would require an infinity of samples

@ Colas, C., Sigaud, O., and Oudeyer, P.-Y. (2019) A hitchhiker's guide to statistical comparisons of reinforcement learning
algorithms. arXiv preprint arXiv:1904.06979

10 / 46
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Statistical tests

Statistical tests: definitions

p-value: risk that the test wrongly rejects the null hypothesis
l.e. probability of a “false positive” (difference found, but there is none)
Usually, make sure p — value < 0.05

We may claim that there is a (non-existing) difference 1 time out of 20...

vVvyVvVvyyespy

Statistical power: depends on sample size (how many data?) and effect size
(how much difference?). The larger, the better
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Statistical tests

Various statistical tests and their assumptions

v

(Student’s) T-test: variances are equal (false when comparing two RL algorithms)

v

Welch's T-test: variances are not equal (fine!)

> Wilcoxon Mann-Whitney (WMW) rank sum test: distributions are continuous,
have the same shape and spread (wrong)

» Ranked T-test: close to MWM, with ranking before T-test

> Bootstrap confidence interval test: no assumptions, but requires large sample
size (empirical testing)

» Permutation test: expensive
» From [Colas et al., 2019], use Welch's T-test!

12 / 46
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Statistical tests

Tests along training

10000

—— SAC
— TD3

0 100 200 300 400
training steps

performance

» One can test differences at each evaluation step along training

» The above two algorithms are different most of the time, but not always

13 / 46
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Statistical tests

Number of seeds

» In general, 15 seeds is sufficient
> ADASTOP: add one seed at a time, until the statistical difference is validated

» When comparing more than two algorithms, more statistical power is needed
(Bonferroni correction)

» One may use different seeds for the agent, and the same seed for the environment

Colas, C., Sigaud, O., and Oudeyer, P.-Y. (2018) How many random seeds? statistical power analysis in deep reinforcement
learning experiments. arXiv preprint arXiv:1806.08295

Mathieu, T., Della Vecchia, R., Shilova, A., de Medeiros, M. C., Kohler, H., Maillard, O.-A., and Preux, P. (2023) AdaStop:
sequential testing for efficient and reliable comparisons of deep rl agents. arXiv preprint arXiv:2306.10882
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Statistical tests

Plotting

e ot

Showing the mean/median is never enough (need info about variance)

The standard deviation is representative only if the spread is Gaussian

>

>

> Rather take the [0.1,0.9] interval of values

» Or the 50% of values around the mean (Inter Quartile Mean, IQM)
>

If less than 10 curves, plot them all
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Statistical tests

Summary

Use Welch's T-test

Use the mean rather than the median

Whenever possible, use at least 15 seeds

Give p-values, check for statistical power

Select adapted plots

When comparing more than two algorithms, add Bonferroni correction
See https://github.com/flowersteam/rl_stats

Lab: try the notebook

vV VVvYyVvVVYyVvYyvyy
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comparisons
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Performance comparisons

Good comparison practices

Desid Current Evaluation Protocol Our Recommendation
. Point estimates

_Uncenamly « Ignore statistical uncertainty Interval estimates via stratified bootstrap
in aggregate > o P intervals
performance  * Hinder results reproducibility intervals

Tables with mean scores per task Performance profiles (score distributions)
Variability in * Overwhelming beyond a few tasks « Show tail distribution of scores on com-
performance + Standard deviations often omitted bined runs across tasks
ac:joss ‘_aSks « Incomplete picture for multimodal ~ * Allow qualitative comparisons
and runs and heavy-tailed distributions « Easily read any score percentile

Mean

« Often dominated by performance on Interquartile Mean (IQM) across all runs

Aggregate outlier tasks * Performance on middle 50% of com-
metrics Median bined runs
for oosum- Requires large number of runs to * Robust to _oulller scores})ul more statisti-
mar;i’z;;gan e claim improvements cally efficient than median
gzmss tasks « Poor indicator of overall perfor- To show other aspects of performance gains,

mance: zero scores on nearly half —report average pre obability of improvement
the tasks do not affect it and optimality gap.

» The authors propose 3 tools to better evaluate algorithms: stratified bootstrap
confidence intervals, performance profiles, aggregate metrics

» Focus on performance profiles
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Useful measures

Performance profiles: definition
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» Normalize the scores:

» 0 for some min (e.g. the seen min or the known environment min)
> 1 for a relevant max (e.g. human performance or the seen max)

» How much % or a number of runs reach performance over the x-axis value?

» An algorithm statistically dominates another if its performance profile is strictl
above the other

» The more environment, the less often it happens
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Performance comparisons

Useful measures

Performance profiles: Rules of thumb

Score Distributions

1.00 — DoN
—— PPO-Penalty

— PPO-Clip
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Fraction of runs with score >t

o
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Min-Max Normalized Score (1) Min-Max Normalized Score (7)

» The worst algorithm should show 100% at 0 and decrease immediately
> The best algorithm should reach 0% shortly before the end of the interval

» This maximizes readability
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Useful measures

Interquartile Mean (IQM)
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Remove the 25% worst and the 25% best scores, show the mean and the interval
Better than median (would be biased if close to 50% runs get 0 value)

Better than mean: less sensitive to outliers

vvyYyy.y

Better at finding a true difference (empirical study)
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Performance comparisons

Useful measures

Conclusion

» Other measures: probability of improvement, optimality gap, ...
» Try it at https://github.com/google-research/rliable

» An easy to use notebook, with an ATARI example



https://github.com/google-research/rliable
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Tuning methods
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Tuning methods

Hyperparameter tuning methods

Bayesian optimization

GP estimate of the function

1.00
best observed value
Pagnt
0.75 // \\
/ \
] 5
= 0.50
[
® observed values
0.25 ; — = true function
/ —— GP mean
A confidence interval
0.00,
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hyperparameter

» The choice of hiy1 depends on information gathered with h;
» No room for parallel search

» Key example: optuna
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Tuning methods

Hyperparameter tuning methods

Grid search or random search

» All evaluations are independent and can be performed in parallel
» Random search is generally better than grid search

» But no mechanism to insist on promising areas

25 / 46
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Tuning methods

Hyperparameter tuning methods

Evolutionary methods

» The best of both worlds:

» Parallel search at each generation
» Convergence to sweet spots

» PBT uses an evolutionary approach

» But hyperparameter search is performed during the training of agents

» A more adaptive dynamics

26 / 46
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Tuning methods

LpeT

Introduction to PBT

vvyyvyy

B D

Hyperparameter search is crucial in Deep RL

Population-Based Training (PBT) provides an efficient solution to this problem
It has been used in several notorious applications of Deep RL
We note h the hyperparameter vector and 6 the parameter vector

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M., Donahue, J., Razavi, A, Vinyals, O., Green, T., Dunning, |.,
Simonyan, K., et al. (2017) Population-based training of neural networks. arXiv preprint arXiv:1711.09846

Jaderberg, M., Czarnecki, W. M., Dunning, |., Marris, L., Lever, G., Castaneda, A. G., Beattie, C., Rabinowitz, N. C., Morcos,

A. S., Ruderman, A., et al. (2019) Human-level performance in 3D multiplayer games with population-based reinforcement
learning. Science, 364(6443), 850-865

Stooke, A., Mahajan, A., Barros, C., Deck, C., Bauer, J., Sygnowski, J., Trebacz, M., Jaderberg, M., Mathieu, M., et al. (202
Open-ended learning leads to generally capable agents. arXiv preprint arXiv:2107.12808

27 / 46
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—peT

The PBT architecture

Trajectorj)—»

Explore

Exploit

Environment

CESETES)
CESRSES)
© 0060 (g
oo

Population

» The PBT approach is applied to more than RL (GAN, supervised
learning...) but here we focus on RL.

» The variation-selection operators (Exploit, Explorec) areﬁ'fxppligd to both _
parameters and hyperparameters h
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Tuning methods
peT

Variation of hyperparameters over time

Atari - ms_pacman logyo(Entropy Cost)
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» We can see the h drifting over time

» Does not converge to a single value
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Tuning methods
—peT

A PBT project

Moyenne et écart type combinés des récompenses

—250

» Tested on pendulum with various population sizes
» Not convincing with a small population
» A larger population can find the right hyper-parameters

» The evolution part is very naive, could be much improved

o (w1 =
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Fair tuning
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Fair tuning

Methodological requirements

» Tuning should be automatized to remove human biases
» Competitors should be allocated the same tuning budget

» Automatic tuning should start from a similar initial performance
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Fair tuning

Practical methodology

v

The seed is NOT a tunable hyperparameter. Random noise must keep random.

v

Tune hyper-parameters of competitors by hand to reach a similar start
performance

Start an automated tuning framework (optuna) from there
Define a time budget or computational budget

Tune competitors with the allocated budget

Generate enough performance results to run statistical tests

Use baselines to contextualize performance: random, oracle

vVvYvYyVvYYyypy

Using appropriate tests, conclude about performance disparities

33/ 46
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Fair tuning

Evaluating a fully specified algorithm

Evaluating a fully specified algorithm

Separate training and evaluation
Reporting mean or median performance is not enough
Do not report standard errors, based on wrong Gaussian assumption

Use steps rather than episodes (episodes are of varying length)

vvyVvVvyyeypy

Do not run an incomplete experiment due to insufficient resources: calibrate your
experiment depending on your resources

v

E.g.: Choose to study the speed of early learning or the optimal performance
(depending on your budget)

34 /46
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Fair tuning

Evaluating a fully specified algorithm

Sensitivity curves

~100

Y
g -200 1 Figure 9: A good sensitivity curve that captures a wide
é 300 4 range of the variable of interest and illustrates that
& —a00 4 performance changes smoothly as the hyperparameter
—s00 4 changes.
2 2 27
Stepsize
1004 Figure 10: A sensitivity curve where the range of
8 o] tested values may be too wide, instead of being fo-
£ 300 cused in the region of interest. We lose some informa-
2 tion around the peak performance and the algorithm
& w00 appears quite sensitive. This sensitivity might be an
e T artefact of the plot—testing insufficiently many values—
Stepsize rather than a property of the algorithm.

Figure 11: A sensitivity curve where we potentially
missed the best performance. The best performing
hyperparameter may be outside the range or may be
the endpoint of the range, but we cannot tell with the
presented information.

Performance

—
2u pm g 5%
Stepsize

> Use parameter sensitivity plots to find adequate parameter ranges

o (w1 =
Patterson, A., Neumann, S., White, M., and White, A. (2023) Empirical design in reinforcement learning. arXiv preprint
arXiv:2304.01315
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Evaluating a fully specified algorithm

Sensitivity regions

Acrobot Mountain Car Pendulum
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Figure 4: A sensitivity region plot for entropy, for
GreedyAC (top row) and SAC (bottom row) in the continuous
action problems.

» More information when sampling many hyper-parameter sets
» Hyper-parameters with narrow sensitivity at peak performance should be set first

©)

B Neumann, S., Lim, S., Joseph, A. G., Pan, Y., White, A., and White, M. (2023) Greedy actor-critic: A new conditional

cross-entropy method for policy improvement. In The Eleventh International Conference on Learning Representations
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Fair tuning

The figure cheklist

A first example

vvyy

CALVIN kitchen-complete-v0 kitchen-mixed-v0 kitchen-partial-v0
50 P 0 0
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Figure 3: Learning curves of online fine-tuning with various methods. Observe that PA-RL + Cal-QL (red) largely always
dominates or attains similar performance to the next best method. Other methods for fine-tuning diffusion polcies (IDQL, DQL,
DPPO) are a bit unstable, and perform worse. Since DPPO is ‘more data inefficient, we plot it with
different x-axis units: for kitchen each unit is 500 episodes (axis goes from 0 to 500K), for antmaze each unit is 100 episodes
(axis goes from 0 to 100K) and for calvin each unit is 10 episodes (axis goes until 10K).

How many seeds?
What is the measure of variability?
Episodes rather than steps

Mark, M. S., Gao, T., Sampaio, G. G., Srirama, M. K., Sharma, A., Finn, C., and Kumar, A. (2024) Policy agnostic RL: Offlin

RL and online RL fine-tuning of any class and backbone. arXiv preprint arXiv:2412.06685
o (w1 =
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Fair tuning
The figure cheklist

A better example

ManiSkill: StackCube ManiSkill: PushChair

]

« . o ie

. L)

Side

7 | | b
‘Adroit: Door Adroit: Hammer Adroit: Pen Adroit: Relocate

. P -
H i
H » -
H i
fo d . !
3l o i i

W) e

— Py ry — B — FemAR — P 96— AT — A6 — GaG —— BFaiy

Figure 6: Results (with Behavior Transformer): During training, we evaluate the agent for 50

pisodes every 50K envi steps. The curves depict the evaluation success rates averaged over
ten seeds, and the shaded areas represent standard deviations. Our method consistently improves the
base policy and outperforms all other baselines.

P> 10 seeds, steps rather than episodes, standard deviation, conclusion given...
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Biological

counterpart

DA
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L Biological MFRL

Reinforcement learning in living systems

Overview: the brain

Cerebral Cortex  Unsupervised Learning]

Basal Ganglia: Reinforcement Learning

E reward

Cerebellum: Supervised Learning
target

> Assumption: model-free RL takes place in basal ganglia

»> A place with many dopaminergic neurons

Doya, K. (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in
Neurobiology, 10:732-739
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L Biological MFRL

Reinforcement learning in living systems

TD rule in dopaminergic neurons

T

Modified impact
of reward on
firing rate

V(se) <= V(st) + afrir1 + 7V (se41) — V(st)]

» The firing rates of dopaminergic neurons reflect the TD error (or RPE)




Reliable evaluation in reinforcement learning
L Biological MFRL

Reinforcement learning in living systems

A potential architecture

r

From Takahashi, Schoenbaum and Niv, Frontiers in Neurosciences, pp. 86-97 july 2008

Environment

frontal cortex
striatum

frontal cortex
dorsolateral

Basal ganglia: ventral, dorsal and dorsolateral striatum
The actor would be the dorsolateral striatum and the critic the ventral striatum

Even more sophisticated views have emerged

vyvyYyy

Question: which algorithm could it be?

Takahashi, Y., Schoenbaum, G., and Niv, Y. (2008) Silencing the critics: understanding the effects of cocaine sensitization on
dorsolateral and ventral striatum in the context of an actor/critic model. Frontiers in neuroscience, 2:282

o (w1 =
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L Biological MFRL
L Which algorithm?

In favor of SARSA

P (left choice) = 0.2 P (right choice) = 0.8

V(| me|)=085 Prowara =025 Proyarg =10 V(| mel)=085

Qme .RA=1

Prediction error (dopamine)
Left choice Right choice

vieaming A A
awamng N N
‘ SARSA — A _A_l

If basal ganglia perform TD learning, which algorithm do they use?
With SARSA: 6t = re41 + 'yQ(st+1,at+1) — Q(St, at)

With Q-LEARNING: §; = r¢41 + maxe YQ(s¢+1,a) — Q(st, at)
Does the RPE depend on the next action?

According to Morris et al.'s experiments, yes

mVVVVV

Morris, G., Nevet, A., Arkadir, D., Vaadia, E., and Bergman, H. (2006) Midbrain dopamine neurons encode decisions for future
action. Nature neuroscience, 9(8):1057-63 o = = = =
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L Which algorithm?

In favor of Q-LEARNING

Nosepoke Odor  Reward

K ;

Tme

nem

.

i IE
s

» Does the RPE depend on the next action?

» According to Roesch et al.'s experiments, no

Roesch, M. R., Calu, D. J., and Schoenbaum, G. (2007) Dopamine neurons encode the better option in rats deciding between
differently delayed or sized rewards. Nature neuroscience, 10(12):1615-24
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L Biological MFRL
L Which algorithm?

Computational study

Tow error

High error indicating that RPE
has too much converged

Action left (%)

Squared Error

C

T ) +
i

Nunber of trials taken into account

Left: best reproduction of the behavior of the rats obtained with the different algorithms.
(illustrated for the delay case).

Right: fitting error when comparing aRPEg, + b and DA activity (recording during the
delay case), in function of the number of trials taken into account.

A computational studied showed that neither Q-LEARNING nor SARSA do fit well
Could be actor-critic?

More consistent with architecture-oriented knowledge

vvyYyypy

Rather, dopamine seems to encode for both RPE and value

Bellot, J., Sigaud, O., Roesch, M. R., Schoenbaum, G., Girard, B., and Khamassi, M. (2012) Dopamine neurons activity in a

multi-choice task: reward prediction error or value function? In Proceedings of the French Computational Neuroscience
NeuroComp'12 workshop, pages 1-7

Bellot, J., Khamassi, M., Sigaud, O., and Girard, B. (2013) Which temporal difference learning algorithm best reproduces

dopamine activity in a multi-choice task? BMC Neuroscience, 14:1-2

u}
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L Biological MFRL
L Which algorithm?

Any question?

Send mail to: Olivier.Sigaud@isir.upmc.fr



Olivier.Sigaud@isir.upmc.fr
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