
From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic methods
Soft Actor Critic

Olivier Sigaud
with the help of Thomas Pierrot

Sorbonne Université
http://people.isir.upmc.fr/sigaud

1 / 12

From Policy Gradient to Actor-Critic methods

SAC

Soft Actor Critic: The best of two worlds

I trpo and ppo: πθ stochastic, on-policy, low sample efficiency, stable
I ddpg and td3: πθ deterministic, replay buffer, better sample efficiency, unstable
I SAC: “Soft” means “entropy regularized”, πθ stochastic, replay buffer
I Adds entropy regularization to favor exploration (follow-up of several papers)
I Attempt to be stable and sample efficient
I Three successive versions

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A. Abbeel, P. et al. (2018) Soft

actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018) Soft actor-critic: Off-policy maximum entropy deep reinforcement

learning with a stochastic actor. arXiv preprint arXiv:1801.01290

Haarnoja, T. Tang, H., Abbeel, P. and Levine, S. (2017) Reinforcement learning with deep energy-based policies. arXiv preprint

arXiv:1702.08165

2 / 12

From Policy Gradient to Actor-Critic methods

SAC

Soft Actor-Critic

sac learns a stochastic policy π∗ maximizing both rewards and entropy:

π∗ = argmax
πθ

∑
t

IE(st,at)∼ρπθ
[r(st,at) + αH(πθ(.|st))]

I The entropy is defined as: H(πθ(.|st)) = IEat∼πθ(.|st) [− log πθ(at|st)]
I sac changes the traditional MDP objective

I Thus, it converges toward different solutions

I Consequently, it introduces a new value function, the soft value function

I As usual, we consider a policy πθ and a soft action-value function Q̂πθ
φ

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and

Koray Kavukcuoglu. (2016) Asynchronous methods for deep reinforcement learning. arXiv preprint arXiv:1602.01783

3 / 12

From Policy Gradient to Actor-Critic methods

SAC

Soft policy evaluation

I Usually, we define V̂ πθ
φ (st) = IEat∼πθ(.|st)

[
Q̂
πθ
φ (st,at)

]
I In soft updates, we rather use:

V̂
πθ
φ (st) = IEat∼πθ(.|st)

[
Q̂
πθ
φ (st,at)

]
+ αH(πθ(.|st))

= IEat∼πθ(.|st)

[
Q̂
πθ
φ (st,at)

]
+ αIEat∼πθ(.|st) [− log πθ(at|st)]

= IEat∼πθ(.|st)

[
Q̂
πθ
φ (st,at)− α log πθ(at|st)

]

4 / 12

From Policy Gradient to Actor-Critic methods

SAC

Critic updates

I We define a standard Bellman operator:

T πQ̂πθ
φ (st,at) = r(st,at) + γV

πθ
φ (st+1)

= r(st,at) + γIEat∼πθ(.|st+1)

[
Q̂
πθ
φ (st+1,at)− α log πθ(at|st+1)

]

Critic parameters can be learned by minimizing the loss associated to
JQ(vth):

lossQ(θ) = IE(st,at,st+1)∼D

[(
r(st,at) + γV̂

πθ
φ (st+1)− Q̂πθ

φ (st,at)
)2
]

where V πθ
φ (st+1) = IEa∼πθ(.|st+1)

[
Q̂
πθ
φ (st+1,a)− α log πθ(a|st+1)

]
I Similar to ddpg update, but with entropy

5 / 12

From Policy Gradient to Actor-Critic methods

SAC

Actor updates

I Update policy such as to become greedy w.r.t to the soft Q-value

I Choice: update the policy towards the exponential of the soft Q-value

Jπ(θ) = IEst∼D[KL(πθ(.|st))||
exp(1

α
Q̂
πθ
φ (st, .))

Zθ(st)
].

I Zθ(st) is just a normalizing term to have a distribution

I sac does not minimize directly this expression but a surrogate one that
has the same gradient w.r.t θ

The policy parameters can be learned by minimizing:

Jπ(θ) = IEst∼D

[
IEat∼πθ(.|st)

[
α log πθ(at|st)− Q̂πθ

φ (st,at)
]]

I Similar to ddpg update, but with entropy

6 / 12

From Policy Gradient to Actor-Critic methods

SAC

Continuous vs discrete actions setting

I sac works in both the discrete action and the continuous action setting

I Discrete action setting:

I The critic takes a state and returns a Q-value per action
I The actor takes a state and returns probabilities over actions

I Continuous action setting:

I The critic takes a state and an action vector and returns a scalar Q-value
I Need to choose a distribution function for the actor
I sac uses a squashed Gaussian: a = tanh(n) where n ∼ N (µφ, σφ)

7 / 12

From Policy Gradient to Actor-Critic methods

SAC

Computing the actor loss

I To compute

Jπ(θ) = IEst∼D

[
IEat∼πθ(.|st)

[
α log πθ(at|st)− Q̂πθ

φ (st,at)
]]

I sac needs to estimate an expectation over actions sampled from the actor,

I That is IEat∼πθ(.|s) [F (st,at)] where F is a scalar function of the action.

I In the discrete action setting, πθ(.|st) is a vector of probabilities
I IEat∼πθ(.|st) [F (st,at)] = πθ(.|st)TF (st, .)
I No specific difficulty

I In the continuous action setting:
I The actor returns µθ and σθ
I Re-parameterization trick: at = tanh(µθ + ε.σθ) where ε ∼ N (0, 1)
I Thus, IEat∼πθ(.|st) [F (st,at)] = IEε∼N (0,1) [F (st, tanh(µθ + εσθ))]
I This trick reduces the variance of the expectation estimate (not always!)
I Can still backprop from samples w.r.t θ

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2020) Monte carlo gradient estimation in machine learning. J. Mach.

Learn. Res., 21(132):1–62

8 / 12

From Policy Gradient to Actor-Critic methods

SAC

Critic update improvements (from td3)

I As in td3, sac uses two critics Q̂πθ
φ1

and Q̂πθ
φ2

I The TD-target becomes:

yt = r + γIEat+1∼πθ(.|st+1)

[
min
i=1,2

Q̂
πθ

φ̄i
(st+1,at+1)− α log πθ(at+1|st+1)

]
And the losses:

 J(θ) = IE(st,at,st+1)∼D

[(
Q̂
πθ
φ1

(st,at)− yt
)2

+
(
Q̂
πθ
φ2

(st,at)− yt
)2
]

J(θ) = IEs∼D
[
IEat∼πθ(.|st)

[
α log πθ(at|st)−mini=1,2 Q̂

πθ

φ̄i
(st,at)

]]
I Since the actor and critic updates are those of ddpg but with entropy, if

we set α = 0 and take a deterministic policy, we exactly get td3

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint

arXiv:1802.09477

9 / 12

From Policy Gradient to Actor-Critic methods

SAC

Automatic Entropy Adjustment

I The temperature α needs to be tuned for each task

I Finding a good α is non trivial

I Instead of tuning α, tune a lower bound H0 for the policy entropy

I And change the optimization problem into a constrained one

{
π∗ = argmax

π

∑
t

IE(st,at)∼ρπθ
[r(st,at)]

s.t. ∀t IE(st,at)∼ρπθ
[− log πθ(at|st)] ≥ H0,

I Use heuristic to compute H0 from the action space size

α can be learned to satisfy this constraint by minimizing:

J(α) = IEst∼D
[
IEat∼πθ(.|st) [−α log πθ(at|st)− αH0]

]
10 / 12

From Policy Gradient to Actor-Critic methods

SAC

Practical algorithm

I Initialize neural networks πθ and Q̂πθ
φ weights

I Play k steps in the environment by sampling actions with πθ

I Store the collected transitions in a replay buffer

I Sample k batches of transitions in the replay buffer

I Update the temperature α, the actor and the critic using SGD

I Repeat this cycle until convergence

11 / 12

From Policy Gradient to Actor-Critic methods

SAC

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

12 / 12

Olivier.Sigaud@upmc.fr

From Policy Gradient to Actor-Critic methods

References

Fujimoto, S., van Hoof, H., and Meger, D. (2018).

Addressing function approximation error in actor-critic methods.
In Dy, J. G. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
1582–1591. PMLR.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018a).

Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
In Dy, J. G. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
1856–1865. PMLR.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., et al. (2018b).

Soft actor-critic algorithms and applications.
arXiv preprint arXiv:1812.05905.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and Kavukcuoglu, K. (2016).

Asynchronous methods for deep reinforcement learning.
In Balcan, M. and Weinberger, K. Q., editors, Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages 1928–1937.
JMLR.org.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2020).

Monte carlo gradient estimation in machine learning.
J. Mach. Learn. Res., 21(132):1–62.

12 / 12

	SAC
	References

