e
From Policy Gradient to Actor-Critic methods

From Policy Gradient to Actor-Critic methods
Soft Actor Critic

Olivier Sigaud
with the help of Thomas Pierrot

Sorbonne Université
http://people.isir.upme.fr/sigaud

From Policy Gradient to Actor-Critic methods

Lsac

Soft Actor Critic: The best of two worlds

) &) Dy yyvyvwy

‘ TRPO ‘ ‘ A2C ‘ ‘DDPG‘

'

SAC

TRPO and PPO: mg stochastic, on-policy, low sample efficiency, stable

DDPG and TD3: 7g deterministic, replay buffer, better sample efficiency, unstable
SAC: “Soft” means “entropy regularized”, mg stochastic, replay buffer

Adds entropy regularization to favor exploration (follow-up of several papers)
Attempt to be stable and sample efficient

Three successive versions

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A. Abbeel, P. et al. (2018) Soft
actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018) Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. arXiv preprint arXiv:1801.01290

Haarnoja, T. Tang, H., Abbeel, P. and Levine, S. (2017) Reinforcement learning with deep energy-based policies. arXiv preprint
arXiv:1702.08165

o (w1 =

e
From Policy Gradient to Actor-Critic methods

Lsac

Soft Actor-Critic

SAC learns a stochastic policy 7™ maximizing both rewards and entropy:
T = argrgrgxzm@,a»pm [r(st,a:) + aH(mo(.[st))]
t

The entropy is defined as: H(mo(.|s:)) = IBa,~rg(.|s;) [— 10g Ta (as|st)]
SAC changes the traditional MDP objective
Thus, it converges toward different solutions

Consequently, it introduces a new value function, the soft value function

vVvyVvyyy

As usual, we consider a policy mg and a soft action-value function Qg"

Ia Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and
Koray Kavukcuoglu. (2016) Asynchronous methods for deep reinforcement learning. arXiv preprint arXiv:1602.01783

3/12

e
From Policy Gradient to Actor-Critic methods
sac

:
Soft policy evaluation

> Usually, we define V,;®(s) = Ea, ~rg (s [Qg" (st, at)]

» In soft updates, we rather use:

Vi (st) = BEayorg (.lse) [QA?(St,at)} + aH(me(.|st))

=IEa,vrg(lse) [Qge(st,at)] + olEa, wrg(|se) [—log mo(at]st)]

= Ea,nmg(|se) [Q;e(st,at) - alogﬁe(at|st)]

e
From Policy Gradient to Actor-Critic methods

Lsac

Critic updates

» We define a standard Bellman operator:

TWQZB (st,a¢) = r(st,ae) + ’yv(;'e (st+1)

=7(st,at) + VEa,vmg(sig1) [Q;e(st+1’ at) — alog We(at|st+1)]

Critic parameters can be learned by minimizing the loss associated to
Jg (vth):

A & 2
lOSSQ(O) =S]E(st;atxst+1)ND |:(T(St, at) - ’YV(;G (St+1) — Q:;? (St, at)) :|

where V(;re (St+1) =]Ea"’ﬂe(~|5t+1) I:Q;e (st+1,a) — alogﬂg(a|st+1)]

» Similar to DDPG update, but with entropy

5/12

From Policy Gradient to Actor-Critic methods
Lsac

Actor updates

» Update policy such as to become greedy w.r.t to the soft Q-value
» Choice: update the policy towards the exponential of the soft Q-value

exp(LQ7° (s1,.))

J(0) = Eg,~p[K L(me(.|s:))] Zo(s0)

» Zg(s¢) is just a normalizing term to have a distribution

» SAC does not minimize directly this expression but a surrogate one that
has the same gradient w.r.t 6

The policy parameters can be learned by minimizing:

Jﬂ—(e) =]EstN’D |:IEat~7l'e(-|St) |:Oé logWQ(at\st) — Qge (St,at)]] ,,/.”7.
|S|R/,

» Similar to DDPG update, but with entropy

6/ 12

From Policy Gradient to Actor-Critic methods
sac

Continuous vs discrete actions setting

Critic Actor Critic

Qi(s.a1) Q3(s.a2) Q3(s.an)

parls) plaals) plasls) @G

P> SAC works in both the discrete action and the continuous action setting

» Discrete action setting:

» The critic takes a state and returns a Q-value per action
» The actor takes a state and returns probabilities over actions

» Continuous action setting:

» The critic takes a state and an action vector and returns a scalar Q-value
» Need to choose a distribution function for the actor

> SAC uses a squashed Gaussian: a = tanh(n) where n. ~ N(ng,04)

7/12

From Policy Gradient to Actor-Critic methods
Lsac

Computing the actor loss

» To compute
J2(8) = Eai o [y mmy (o) [log To(arls:) — Q3 (st 0)] |
» SAC needs to estimate an expectation over actions sampled from the actor,

» That is IEa, rg(.|s) [F(st,a:)] where F' is a scalar function of the action.

» In the discrete action setting, mo(.|s¢) is a vector of probabilities

>]Eat~7r9(.|st) [F(St7at)] = 779('|St)TF(St7)
» No specific difficulty

» In the continuous action setting:

The actor returns ug and og

Re-parameterization trick: a; = tanh(ug + €.09) where € ~ A(0,1)
Thus, I8,, wrg(.|sy) [F(st,at)] = Eepr(o,1) [F(st, tanh(ug + €06))]
This trick reduces the variance of the expectation estimate (not always!)
Can still backprop from samples w.r.t 6

vVVYVYYVYY

Ia Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2020) Monte carlo gradient estimation in machine learning. J. Mach.
Learn. Res., 21(132):1-62

8/ 12

From Policy Gradient to Actor-Critic methods
sac

Critic update improvements (from TD3)

» As in TD3, SAC uses two critics Qg‘i and ng
» The TD-target becomes:

Yy =71+ Ea, |y~ (lsir1) [}2{“2 Qg (st1,a041) — alogme (at+1|St+1)}

And the losses:

. 2 A 2

J(e) =]E(St7at7st+1)~D |:(Q¢? (Staat) - yt) + (Q¢92 (stvat) - yt)
J(0) = Esup [Ianwe(.m) [a log mo (a¢|st) — min;=1,2 Qg‘j (st, at)]
» Since the actor and critic updates are those of DDPG but with entropy, if
we set v = 0 and take a deterministic policy, we exactly get TD3

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint
arXiv:1802.09477

e
From Policy Gradient to Actor-Critic methods

Lsac

Automatic Entropy Adjustment

» The temperature o needs to be tuned for each task
» Finding a good « is non trivial
» Instead of tuning «, tune a lower bound H, for the policy entropy

» And change the optimization problem into a constrained one

T = argma’XEIE(St,at)NPwe [T(Stvat)]
T t
s.t. V¢ E(Styat)"’ﬂ-rre [_ log 7T9(at|st)] > Ho,

» Use heuristic to compute H from the action space size

a can be learned to satisfy this constraint by minimizing:

ISIR

hed
DESSISTEMES

J(a) = Es,~p []EatNWB(-lst) [—alog me(at|st) — ofHo]]

10/ 12

R

From Policy Gradient to Actor-Critic methods
sac

Practical algorithm

Initialize neural networks g and Qg" weights
Play k steps in the environment by sampling actions with mg

Store the collected transitions in a replay buffer

>

>

>

» Sample k batches of transitions in the replay buffer

» Update the temperature «, the actor and the critic using SGD
>

Repeat this cycle until convergence

ISIR

hed
DESSISTEMES

1/12

From Policy Gradient to Actor-Critic methods
Lsac

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

Olivier.Sigaud@upmc.fr

From Policy Gradient to Actor-Critic methods

References

Fujimoto, S., van Hoof, H., and Meger, D. (2018).

Add

function approxi ion error in actor-critic methods.

In Dy, J. G. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmassan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
1582-1591. PMLR.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018a).

Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor.

In Dy, J. G. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmassan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
1856-1865. PMLR.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., et al. (2018b).

Soft actor-critic algorithms and applications.
arXiv preprint arXiv:1812.05905.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and Kavukcuoglu, K. (2016).

Asynchronous methods for deep reinforcement learning.

In Balcan, M. and Weinberger, K. Q., editors, Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages 1928-1937.
JMLR.org

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2020).

Monte carlo gradient estimation in machine learning.
J. Mach. Learn. Res., 21(132):1-62.

	SAC
	References

