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Direct policy search on neural networks
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» The neural network is a controller: input = state, output = action
» The parameters @ are the weigths and biases of all neurons
» By changing 6, you change the controller g
> You want to take the best actions in all states to optimize J(6)
» Key feature in the direct policy search problem: 6 is often large
» Two families of approaches:

» Cross Entropy Method (CEM), CMA-ES...
» Finite difference methods
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The Cross-Entropy Method

CEM for policy search: overview
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1.Start with the normal distribution
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2. Generate N vectors with this
distribution

3. Evaluate each vector and select a
proportion p of the best ones. These
vectors are represented in grey

4. Compute the mean and standard
deviation of the best vectors

5. Add a noise term to the standard
deviation, to avoid premature
convergence to a local optimum

» Here, an example where 0 is 2D

Marin, and Sigaud, O. (2012) Towards fast and adaptive optimal control policies for robots: A direct policy search approach,

Proceedings conference Robotica, pp. 21-26

6. This mean and standard deviation
define the normal distribution of
next iteration
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The covariance matrix
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X X X
cov(X,Y)<0 cov(X,Y)=0 cov(X,Y)>0

» The covariance is a measure of the joint variability of two random
variables (wikipedia).

v

The covariance matrix is a square matrix giving the covariance between
each pair of elements of a given random vector (wikipedia).

The ellipsoid illustrates the range of likely values for the random variables
In CEM, the random variables are single parameters of vectors 6
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The covariance matrix is in 8 x 8, too large if 8 is large ‘/lSlR
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Just use the diagonal
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The Cross-Entropy Method

CMA-ES vs CEM
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» The stronger the yellow, the higher the return
» CMA-ES uses many additional tricks

Hansen, N. & Auger, A. (2011) CMA-ES: evolution strategies and covariance matrix adaptation. In Proceedings of the 13th

annual conference companion on Genetic and evolutionary computation (pp. 991-1010)
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- Gradient-based Methods

Finite difference methods

We consider we do not know the derivative V.J(0)
Intuition: for a small enough ¢, V.J(6) ~ w
Sample € from a weighted Gaussian o N (0, 1)

Use a Monte Carlo approach to estimate J(0 + ¢€), J(0 — ¢€)

Then use the estimated derivative to perform gradient descent
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More formal account in Choromanski: Gaussian smoothing objective

Choromanski, K., Rowland, M., Sindhwani, V., Turner, R., and Weller, A. Structured evolution with compact architectures for
scalable policy optimization. In International Conference on Machine Learning, pp.970-978. PMLR, 2018
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Gradient-based Methods

Finite difference variants

» Rather sample € from N(0,I) and show o
» Three ES estimators:
1. Vanilla (P samples): ﬁX,Jg(G) = ﬁ Zf;l J(0 + o€, )e;
2. Antithetic (2P samples):
@ﬁTJU(G) = ﬁ N (J(O+0e)— J(O —0e;))e;
3. Forward finite-difference (P+1 samples):
VRFPIo(0) = 55 SiL1(J(0 + o€;) — T (0))e;
> In OpenAl ES, the gradient is estimated with 1. then applied with Adam
» Augmented Random Search (Mania et al., 2018) compares the variants

@ Tim Salimans, Jonathan Ho, Xi Chen, and llya Sutskever. Evolution strategies as a scalable alternative to reinforcement learning.
arXiv preprint arXiv:1703.03864, 2017

Ia Mania, H., Guy, A., and Recht, B. (2018) Simple random search of static linear policies is competitive for reinforcement learning,

Advances in Neural Information Processing Systems, 31
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Improvements over OpenAl ES

(a) Schematic

(b) Quadratic with a perturbed gradient
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» Guided ES: One can improve efficiency by adding extra information about the
gradient (Maheswaranathan et al., 2018)
» Suggests combinations with RL
» Trust-Region ES: One can improve exploration, by drawing better-than-Gaussian

directions (Liu et al., 2019)

Maheswaranathan, N., Metz, L., Tucker, G., and Sohl-Dickstein, J. Guided evolutionary strategies: escaping the curse of

dimensionality in random search. arXiv preprint arXiv:1806.10230, 2018

Liu, G., Zhao, L., Yang, F., Bian, J., Qin, T., Yu, N., and Liu, T.-Y. Trust Region Evolution Strategies. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pp. 4352-4359, 2019
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- Gradient-based Methods

Finite difference methods vs CEM (and CMA-ES)

> Finite difference methods are gradient-based direct policy search methods.

» They are derivative-free, but a backprop step is applied, using an approximate
gradient (OpenAl ES uses Adam!)

> CEM and CMA-ES sample policies around the current one.

» They do not compute a variation to the current policy nor do they apply a
gradient

» The new policy is a weighted barycenter of sampled policies

> In CEM and CMA-ES, directions are not sampled from A(0,I), but from an
updated covariance matrix N'(6,X)

» Open questions:

» do FD methods scale better than CEM-like methods?
» does Adam optimization compensate for not using the covariance matrix?

> A lot of such questions are still open in direct policy search methods

» Research on advanced derivative-free methods is active

@ Berahas, A. S., Cao, L., Choromanski, K., and Scheinberg, K. (2022) A theoretical and empirical comparison of gradient

approximations in derivative-free optimization. Foundations of Computational Mathematics, 22(2):507-560
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Any question?

Send mail to: Olivier.Sigaud@isir.upmc.fr



Olivier.Sigaud@isir.upmc.fr
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