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Evolution + deep RL

Part3: Evolving policies for diversity

Reinforcement learning issues: sparse rewards and deceptive gradients

I Sparse reward: very few trajectories are rewarded, the agent learns nothing

I Deceptive gradient: drives the agent away from the target trajectory

I Looking for diversity helps finding sparse rewards

I Looking for diversity only handles deceptive gradients

I But diversity in irrelevant behaviors is not a good solution
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Evolution + deep RL

Part3: Evolving policies for diversity

Diversity that matters: behavior descriptors

I We would like to get policies that behave differently with respect to
domain-relevant criteria

I The easiest approach is to define a set of behavior descriptors and to cover the
space of these descriptors

I E.g. in locomotion: running speed, frequency of ground contacts, head height...

I E.g. in maze navigation: final point, distance travelled...

I These behavior descriptors could be learned (not covered)
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Evolution + deep RL

Part3: Evolving policies for diversity

Evolving policies for diversity: two frameworks

I Behavior characterizations (BC) = B. descriptors (BD), describe trajectories

I The NS approach only looks for diversity. It is better in the absence of reward, or
when the reward signal is very sparse or deceptive

I The QD approach is more appropriate when the reward signal is more dense and
can contribute to the policy search process
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Pure diversity

Novelty Search basics

I Evolution of just novelty with respect to an archive of policies

I The fitness is a function of a distance to other policies in the BD space

I In practice, mean distance to K nearest neighbors (more continuous than
distance to closest or K-closest)

I Several archive management methods (not covered)

Lehman, J. and Stanley, K. O. (2011) Abandoning objectives: Evolution through the search for novelty alone. Evolutionary

computation, 19(2):189–223
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Evolution + deep RL

Pure diversity

NS with RL

I The figure suggests 3 cases: novelty used as fitness, as reward, or both

I Used in both: ns-rl, with goal-conditioned policies

I If novelty is used just as fitness, the combination is close to a QD method

I Future research: investigate the differences to QD

Shi, L., Li, S., Zheng, Q., Yao, M., and Pan, G. Efficient novelty search through deep reinforcement learning. IEEE Access,

8:128809–128818, 2020.
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Pure diversity

ARAC and P3S-TD3

I ARAC: Only data from the most novel agents are sent to the replay buffer

I P3S-TD3: attraction towards the top agent

I P3S-TD3: No BC space, distance in policy param space

Doan, Thang and Mazoure, Bogdan and Durand, Audrey and Pineau, Joelle and Hjelm, R. Devon (2019) Attraction-Repulsion

Actor-Critic for Continuous Control Reinforcement Learning, arXiv preprint arXiv:1909.07543

Jung, W., Park, G., and Sung, Y. (2020) Population-guided parallel policy search for reinforcement learning. In 8th International

Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net
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Pure diversity

Diversity without combination: SVPG and DVD

I SVPG: each agent is a particle, attraction and repulsion

I Models a distribution of high-performing policies with SVGD

I DVD: maximize the volume between agents (global vs one-to-one)

I Both: No BC space, distance in policy param space

Liu, Y., Ramachandran, P., Liu, Q., and Peng, J. (2017) Stein variational policy gradient. arXiv preprint arXiv:1704.02399

Parker-Holder, J., Pacchiano, A., Choromanski, K., and Roberts, S. (2020) Effective diversity in population-based reinforcement

learning. arXiv preprint arXiv:2002.00632
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Quality and Diversity

QD Methods

I RL and evo agents are inserted in the archive if they win the competition (Pareto
front or Map-Elites)

I One can use evolution and/or RL to improve quality and/or diversity

I All combinations exist

Pierrot, T., Richard, G., Beguir, K., and Cully, A. (2022b) Multi-objective quality diversity optimization. In Proceedings of the

Genetic and Evolutionary Computation Conference, pages 139–147
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Quality and Diversity

QDPG

I Two separate diversity and quality critics

I Uses a state descriptor in addition to BD to favor step-based diversity

Pierrot, T., Macé, V., Chalumeau, F., Flajolet, A., Cideron, G., Beguir, K., Cully, A., Sigaud, O., and Perrin-Gilbert, N. (2022)

Diversity policy gradient for sample efficient quality-diversity optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1075–1083

10 / 13



Evolution + deep RL

Quality and Diversity

PGA-ME Archives

I Note the low covering of me-es and qd-pg

I A very active domain

Colas, C., Huizinga, J., Madhavan, V., and Clune, J. (2020) Scaling map-elites to deep neuroevolution. arXiv preprint

arXiv:2003.01825

Nilsson, O. and Cully, A. (2021) Policy gradient assisted Map-Elites. In Proceedings of the Genetic and Evolutionary Computation

Conference, pages 866–875
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Quality and Diversity

Final remarks

I Looking for diversity is key to solving hard exploration problems (sparse rewards)

I A growing field, moving from evo conferences (GECCO, ECC, ...) to machine
learning conferences (NeurIPS, ICLR, ...)

I A lot of questions remain to be investigated

I Combination algorithms have more potential, but more hyper-parameters

I Population-based training facilitates hyper-parameter tuning

Doncieux, S., Laflaquière, A., and Coninx, A. (2019) Novelty search: a theoretical perspective. In Proceedings of the Genetic and

Evolutionary Computation Conference, pages 99–106. ACM
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Quality and Diversity

Any question?

Send mail to: Olivier.Sigaud@isir.upmc.fr
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