Direct Policy Search vs Reinforcement Learning A closer look at policy gradient updates

Olivier Sigaud

Sorbonne Université http://people.isir.upmc.fr/sigaud

Reminder: policy gradient updates

- ▶ Sample a set of m trajectories from π_{θ}
- Compute:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \nabla_{\boldsymbol{\theta}} \mathrm{log} \pi_{\boldsymbol{\theta}}(\boldsymbol{a}_{t}^{(i)} | \boldsymbol{s}_{t}^{(i)}) \boldsymbol{R}(\boldsymbol{\tau}^{(i)})$$

- Side note: if $R(\tau) = 0$, does nothing
- Update parameters θ of π_{θ} using $\theta_{i+1} \leftarrow \theta_i + \alpha_i \nabla_{\theta} \mathbf{J}(\theta)$ (or something more advanced)
- Iterate: sample again

Policy Gradient details

Policy gradient: visual understanding

Computing $\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau)$ at some (s_t, a_t)

- We consider a Gaussian stochastic policy with state-dependent variance
- If a $s_t \times a_t$ pair was rewarded ($R(\tau) > 0$), we want to update θ to increase its probability
- We feed s_t to the input, it provides $\mu_{\theta}, \sigma_{\theta}$
- We compute the log probability of a_t given $\mathcal{N}(\mu_{\theta}, \sigma_{\theta})$
- And we change θ to increase it

Policy Gradient details

Policy gradient: visual understanding

Increasing $\log \pi_{\theta}(a_t|s_t)$ at some (s_t, a_t)

- We want to increase $\log \pi_{\theta}(a_t|s_t)$ by changing θ params
- We do so by minimizing the loss $L(\theta) = -\log \pi_{\theta}(a_t|s_t)$
- We compute the probability of a_t given $\mathcal{N}(\mu_{\theta}, \sigma_{\theta})$

$$\blacktriangleright \ \pi_{\theta}(a_t|s_t) = \exp(-\frac{(a_t - \mu_{\theta})^2}{\sigma_{\theta}^2}), \text{ thus } \log \pi_{\theta}(a_t|s_t) = -\frac{(a_t - \mu_{\theta})^2}{\sigma_{\theta}^2}$$

- The gradient is wrt $\mu_{ heta}, \sigma_{ heta}$, then backproped to update $m{ heta}$
- Note, shown with μ_{θ} (fixed σ_{θ})
- Other option: decrease σ_{θ} , get more deterministic
- Experimentally, decreasing σ_{θ} has more impact (need for entropy regularization)

Policy Gradient details

Policy gradient: visual understanding

Policy gradient updates: considering another sample

- The previous update moved θ in some direction
- Then we do the same for another $s \times a$ pair
- The new update is added to the update performed for the previous pair
- It moves moved θ in some other direction

Policy Gradient details

Policy gradient: visual understanding

Policy gradient updates: all samples at a time

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(a_t^{(i)} | s_t^{(i)}) R(\boldsymbol{\tau}^{(i)})$$

- Thus the gradient of the reward is the mean sum over all the small gradients
- Since this is a sum, the order does not matter
- To speed up, one may rather take several minibatches
- Introduces further variance in the applied updates

Direct Policy Search vs Reinforcement Learning Policy Gradient details Policy gradient: visual understanding

Locality of updates

- If the set of impacted weights was different for each update, the global update would be perfect
- In practice, through the sum over weights, some updates contradict eachother
- It works "on average"
- If different intermediate neurons could represent different states, gradient for different state action pairs would not sum up
- To imagine this, consider a one hot encoding of states
- To be studied: Is there a natural drive in deep RL for this disentanglement?
- Topic: state representation learning

Policy Gradient details

Policy gradient: visual understanding

Policy gradient updates: local conclusion

- Sample many trajectories from a single π_{θ} (a point in the $J(\theta)$ landscape)
- The policy gradient changes the proba of actions locally in each state
- By updating each local action probability, θ changes globally (we move to another point)
- This ends up in applying a gradient step in the $J(\theta)$ landscape
- But note that even with perfect sampling, the sum over local gradient steps does guarantee moving to a better policy

・ロト ・回ト ・ヨト ・ヨト

Policy Gradient details

 ${ \sqsubseteq_{\mathsf{Policy gradient: visual understanding} } }$

Any question?

Send mail to: Olivier.Sigaud@isir.upmc.fr

・ロト ・回 ト ・ヨト ・ヨト

Lesort, T., Díaz-Rodríguez, N., Goudou, J.-F., and Filliat, D. (2018).

State representation learning for control: An overview. Neural Networks, 108:379–392.

