
Reinforcement Learning with Prior Data (RLPD)

Reinforcement Learning with Prior Data (RLPD)

Olivier Sigaud

Sorbonne Université
http://www.isir.upmc.fr/personnel/sigaud

1 / 26



Reinforcement Learning with Prior Data (RLPD)

RLPD: Overview

▶ rlpd builds upon sac and adds several complementary advances:
▶ It efficiently combines offline RL with any dataset (expert or play data) with

online fine-tuning
▶ It uses Layer Normalization
▶ It combines it with high UTD ratio
▶ Depending on the environment:

▶ It uses 1 or 2 critics (td3 trick) to counteract over-estimation bias
▶ It uses entropy maximization or not to favor exploration
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Methods

Balanced sampling in RB

Offline data + Off-policy learning

▶ Inspired from [Ross and Bagnell, 2012]

▶ Better than offline pre-training then online fine-tuning (see ablations)

▶ But contradicted by the wsrl paper [Zhou et al., 2024]

▶ Offline-to-Online is a very active field...

Ross, S. and Bagnell, J. A. (2012) Agnostic system identification for model-based reinforcement learning. arXiv preprint

arXiv:1203.1007.

Zhou, Z., Peng, A., Li, Q., Levine, S., and Kumar, A. (2024) Efficient online reinforcement learning fine-tuning need not retain

offline data. arXiv preprint arXiv:2412.07762
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Methods

Balanced sampling in RB

Symmetric sampling vs buffer initialization

▶ Low sensitivity to the amount of mixing

▶ 50% offers the best compromise between variance, speed of convergence, and
asymptotic performance.

▶ Another option would be to initialize the buffer with the offline dataset (seeding)

▶ Initializing the buffer with large amounts of data limits improvement

▶ Symmetric sampling works better
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Methods

Using layer normalization

Layer Norm

▶ Offline data + Off-policy learning is not enough to get strong performance

▶ LayerNorm helps

▶ Without LayerNorm, Q-values are over-estimated and the policy performs poorly

▶ Now a common recipe (see also simBa, bro, ...)

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016) Layer normalization. arXiv preprint arXiv:1607.06450
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Methods

Using layer normalization

Effects of Layer Norm

▶ Prevents catastrophic value extrapolation in OOD data

▶ See [Kostrikov et al., 2021]: offpolicy methods often prevent exploration to avoid
OOD over-estimation

▶ iql finds a way to prevent this

Kostrikov, I., Nair, A., and Levine, S. (2021) Offline reinforcement learning with implicit Q-learning. arXiv preprint

arXiv:2110.06169 (ICLR 2023)
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Impact of Layer Norm

▶ Better overall performance
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Methods

Using high UTD ratio

High UTD (update-to-data) ratio

▶ High UTD ratio: perform many gradient steps from the same data
▶ High UTD ratio results in statistical overfitting [Li et al., 2023]
▶ Three techniques:

1. L2 regularization of parameters [Večeŕık et al., 2017]
2. Dropout (droQ) [Hiraoka et al., 2021]
3. Random Ensemble Distillation (redQ) [Chen et al., 2021] → works best

▶ Use E = 10 networks (empirical, not studied)
▶ Update the actor taking the average over critic gradients

Li, Q., Kumar, A., Kostrikov, I., and Levine, S. (2023) Efficient deep reinforcement learning requires regulating overfitting. arXiv

preprint arXiv:2304.10466

Chen, X., Wang, C., Zhou, Z., and Ross, K. (2021) Randomized ensembled double Q-learning: Learning fast without a model.

arXiv preprint arXiv:2101.05982
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UTD HalfCheetah

▶ Increasing UTD with RLPD improves sample efficiency from pixels.
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Methods

Fighting over-estimation bias

Over-estimation bias

▶ Using 2 critics as in td3 and sac might not be necessary

▶ This is environment-dependent, choose experimentally

▶ To combine with ensembling, choose one or two critics among E to perform
updates

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint

arXiv:1802.09477
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Using entropy maximization

Entropy maximization

▶ Several SOTA RL algos such as sac explore by maximizing the entropy of the
policy (and critic)

▶ Sometimes, sac outperforms td3, sometimes not

▶ So using entropy maximization should be an environment-dependent decision

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A. Abbeel, P. et al. (2018) Soft

actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905
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Using entropy maximization

The RLPD algorithm

▶ In the paper page 5 (quite clear)
▶ A mistake line 17: should be y = y − γαlog(πϕ(ā

′|s′))
▶ The official implementation is correct
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Main results

Environments

▶ Adroit, D4RL AntMaze, V-D4RL locomotion
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Main results

Main AntMaze result (front figure)

▶ Much better performance and sample efficiency than competitors
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Main results

Global results through domains

▶ 10 seeds, 1 std shaded

▶ In adroit and antmaze, their prior SOTA is iql + fine-tuning

▶ In locomotion, the prior SOTA (off2on) is hard to beat

Lee, S., Seo, Y., Lee, K., Abbeel, P., and Shin, J. (2022) Offline-to-online reinforcement learning via balanced replay and

pessimistic Q-ensemble. In Conference on Robot Learning, pages 1702–1712. PMLR

21 / 26



Reinforcement Learning with Prior Data (RLPD)

Main results

Ablations: Results on hardest tasks

▶ With 2 or 3 layers

▶ With or without entropy maximization

▶ With or without min from 2 critics

▶ With or without random ensemble distillation
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Main results

Training from images

▶ They use a six layer CNN as input architecture

▶ LeRobot people also use a pre-trained ResNet 10

▶ To avoid overfitting, image augmentation (random shift, 4 pixels)

Yarats, D., Kostrikov, I., and Fergus, R. (2021) Image augmentation is all you need: Regularizing deep reinforcement learning

from pixels. In International conference on learning representations
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Main results

Hyper-parameters

▶ Looks clean, according to LeRobot members, everything is specified
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Main results

Implementation details

▶ According to LeRobot members, the following matters:

▶ Reward, state and action normalization matters a lot
▶ On robots, one should initialize the policy very close to 0 (by dividing last

layer weights by ≈ 100)
▶ Decoupling data collection and training: use two threads, adjust the rate at

which the actor is updated
▶ Rather insensitive to the size of the replay buffer

▶ Mistakes in serl and hil-serl implementations: γ is forgotten:

▶ in serl:
https://github.com/rail-
berkeley/serl/blob/(...)/agents/continuous/sac.py#L172

▶ in hil-serl:
https://github.com/rail-berkeley/hil-
serl/blob/main/serl launcher/serl launcher/agents/continuous/sac.py#L187
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Main results

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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