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Reinforcement Learning with Prior Data (RLPD)

RLPD: Overview
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Mechanisms in brown are environment-dependent

» RLPD builds upon SAC and adds several complementary advances:
> |t efficiently combines offline RL with any dataset (expert or play data) with
online fine-tuning
» It uses Layer Normalization
: It combines it with high UTD ratio

Depending on the environment:
» It uses 1 or 2 critics (TD3 trick) to counteract over-estimation bias

P It uses entropy maximization or not to favor exploration 2/
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LMethods
Balanced sampling in RB

Offline data + Off-policy learning

offline data
(few expert demos 50%
or more play data)

50% online data
(replay buffer)

symmetric sampling

Inspired from [Ross and Bagnell, 2012]
Better than offline pre-training then online fine-tuning (see ablations)

But contradicted by the WSRL paper [Zhou et al., 2024]

vvyyypy

Offline-to-Online is a very active field...

Ross, S. and Bagnell, J. A. (2012) Agnostic system identification for model-based reinforcement learning. arXiv preprint
arXiv:1203.1007.

Zhou, Z., Peng, A., Li, Q., Levine, S., and Kumar, A. (2024) Efficient online reinforcement learning fine-tuning need not retai
offline data. arXiv preprint arXiv:2412.07762
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Symmetric sampling vs buffer initialization
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] 100 200 300 0 100 200 300 0 100 200 Figure 10. Symmetric sampling improves sample efficiency and
Environment steps (=10") reduces variance across seeds, and does not work by simply in-

creasing the reward density in a batch.

> Low sensitivity to the amount of mixing

> 50% offers the best compromise between variance, speed of convergence, and
asymptotic performance.

> Another option would be to initialize the buffer with the offline dataset (seeding)

\4

Initializing the buffer with large amounts of data limits improvement

» Symmetric sampling works better
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Using layer normalization

Layer Norm
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> Offline data 4+ Off-policy learning is not enough to get strong performance
> LayerNorm helps
> Without LayerNorm, Q-values are over-estimated and the policy performs poorly

»> Now a common recipe (see also SIMBA, BRO, ...)

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016) Layer normalization. arXiv preprint arXiv:1607.06450
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LUsing layer normalization

Effects of Layer Norm

No LaéerNonm With LayerNorm

Figure 3. We fit data (left) with a two-layer MLP without Layer-
Norm (center) and with LayerNorm (right). LayerNorm bounds
the values and prevents catastrophic overestimation.
Prevents catastrophic value extrapolation in OOD data

See [Kostrikov et al., 2021]: offpolicy methods often prevent exploration to avoid
OOD over-estimation

IQL finds a way to prevent this

Kostrikov, I., Nair, A., and Levine, S. (2021) Offline reinforcement learning with implicit Q-learning. arXiv preprint
arXiv:2110.06169 (ICLR 2023)
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Using layer normalization
:

Impact of Layer Norm
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Figure 7. LayerNorm is crucial for strong performance, particu-
larly when data are limited or narrowly distributed.

> Better overall performance
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Using high UTD ratio

High UTD (update-to-data) ratio
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High UTD ratio: perform many gradient steps from the same data
High UTD ratio results in statistical overfitting [Li et al., 2023]
Three techniques:
1. L2 regularization of parameters [Velerik et al., 2017]
2. Dropout (DROQ) [Hiraoka et al., 2021]
3. Random Ensemble Distillation (REDQ) [Chen et al., 2021] — works best
Use E = 10 networks (empirical, not studied)
Update the actor taking the average over critic gradients

Li, Q., Kumar, A., Kostrikov, I., and Levine, S. (2023) Efficient deep reinforcement learning requires regulating overfitting. arXi
preprint arXiv:2304.10466
Chen, X., Wang, C., Zhou, Z., and Ross, K. (2021) Randomized ensembled double Q-learning: Learning fast without a model.
arXiv preprint arXiv:2101.05982
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» Increasing UTD with RLPD improves sample efficiency from pixels.
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Fighting over-estimation bias

Over-estimation bias

fighting [critic 2
over-estimation > Critic1 .

» Using 2 critics as in TD3 and SAC might not be necessary
» This is environment-dependent, choose experimentally

» To combine with ensembling, choose one or two critics among E to perform
updates

arXiv:1802.09477
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Entropy maximization

entropy
maximization

» Several SOTA RL algos such as SAC explore by maximizing the entropy of the
policy (and critic)

» Sometimes, SAC outperforms TD3, sometimes not
» So using entropy maximization should be an environment-dependent decision

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A. Abbeel, P. et al. (2018)
actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905
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Using entropy maximization

The RLPD algorithm

‘Algorithm 1 Onfine RL with Offfine Data (RLPD)

1: Select L rNorm, Large Ensemble Size E, Gradient
Steps G, and architecture.

2 Randomly initialize Critic 6, (set targets ¢/ = 6,) for

i=1,2,...,F and Actor ¢ parameters. Select dis-

count 7, temperature @ and critic EMA weight p.
3: Determine number of Critic targets to subset Z € {1,2}
4: Initialize empty replay buffer R
5: Initialize buffer D with offline data
6: while True do
7: Receive initial observation state s,
8 fort=0,
9 Take action a; ~ 4(-|s:)
10: Store transition (s, g, 7y, s¢+1) in R
11 for g = 1.¢/ do
12 Sample minibatch b of
13 Sample minibatch by of & from D
14: ‘Combine by and by, to form batch b of size N'
1s: Sample set Z of Z indices from {1,2,..., ]
16: With b, set

=r4y (u;lzu de.&')) @ ~mg(ls)
17 Add entropy term y = y + a log
18: fori=1Edo
19: Update 6, minimizing loss:
L= 230 Qotsa)?

20: end for
2 Update target networks 0, + pf, + (1 — p)6;
22: for

23: With b, update ¢ maximizing objective:
5
1 . . .
F 2 Quls,8) —alogms(als), @~ |s)
d

24 endfor
25 end while

> In the paper page 5 (quite clear)
> A mistake line 17: should be y = y — yalog(my(a'[s’))
» The official implementation is correct o - -
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Main results

Environments

R R

(@) The Sparse Adroit Domain. Pen, Door and Relocate tasks respectively.

Eris

(b) The AntMaze Domain. Umaze, Medium and Large tasks respectively.

() The V-DART. Domain. Walker Walk, Cheetah Run and Humanoid Walk respectively

» Adroit, D4ARL AntMaze, V-D4RL locomotion
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Main results

Main AntMaze result (front figure)

All D4RL AntMaze Tasks
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» Much better performance and sample efficiency than competitors
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Main results

Global results through domains

All Adroit Sparse Domains All D4RL AntMaze Domains All D4RL Locomotion Tasks
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10 seeds, 1 std shaded

In ADROIT and ANTMAZE, their prior SOTA is 1QL + fine-tuning

vvyy

In locomotion, the prior SOTA (OFF20N) is hard to beat

Lee, S., Seo, Y., Lee, K., Abbeel, P., and Shin, J. (2022) Offline-to-online reinforcement learning via balanced replay and
pessimistic Q-ensemble. In Conference on Robot Learning, pages 1702-1712. PMLR
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Main results

Ablations: Results on hardest tasks
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» With 2 or 3 layers
» With or without entropy maximization
» With or without min from 2 critics
» With or without random ensemble distillation
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Training from images

Walker Walk

Normalized Return

vyvyy

Cheetah Run

.......... i
200 30
Environment steps (= 10°)

They use a six layer CNN as input architecture

LeRobot people also use a pre-trained ResNet 10

from pixels. In International conference on learning representations

Humanoid Walk

== BC Medium
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— Drow2
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To avoid overfitting, image augmentation (random shift, 4 pixels)

Yarats, D., Kostrikov, I., and Fergus, R. (2021) Image augmentation is all you need: Regularizing deep reinforcement learning
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Main results

Hyper-parameters

» Looks clean, according to LeRobot members, everything is specified

Tuble 1. RLPD hyperparameters.

Parameter

Online batch size

Offline batch size

Discount ()

Optimizer

Learning rate

Ensemble size (E)

Critic EMA weight (p)
Gradient Steps (State Based) (G or UTD)
Network Width

Initial Entropy Temperature (cx)
Target Entropy

256 Units
L0

_dim(4)/2

Pixel-Based Hyperparamet

ers

Action repeat
Observation size
Image shift amount

164, 64]

Table 2. Environment specific hyperparameters.

Environment | CDQ | Entropy Backups | MLP Architecture
Locomotion True True 2 Layer
AntMaze False False 3 Layer
Adroit True False 3 Layer
DMC (Pixels) | False False 2 Layer

o (w1 =
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Implementation details

> According to LeRobot members, the following matters:

»> Reward, state and action normalization matters a lot

»> On robots, one should initialize the policy very close to 0 (by dividing last
layer weights by ~ 100)

» Decoupling data collection and training: use two threads, adjust the rate at
which the actor is updated

> Rather insensitive to the size of the replay buffer

P> Mistakes in SERL and HIL-SERL implementations: -y is forgotten:

> in SERL:
https://github.com/rail-
berkeley/serl/blob/(...)/agents/continuous/sac.py#L172

> in HIL-SERL:
https://github.com/rail-berkeley/hil-
serl/blob/main/serl,launcher/serl,launcher/agents/continuous/sac.py#LlS?rn.

U/|S|R,

25 / 26
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Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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