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»> A SoTA method for robot learning (sample efficient, time efficient, performs well)
> A flexible, multi-component algorithm: MBRL + Evo + MFRL + rep. learning
P Lots of inner synergies between components
» An older instance is POPLIN
» Roadmap:

> We start with the model-based MPC component
» Then we add the temporal difference component and outline synergies
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Hansen, N., Wang, X., and Su, H. (2022) Temporal difference learning for model predictive control. arXiv preprint
arXiv:2203.04955

Ia Wang, T. and Ba, J. (2019) Exploring model-based planning with policy networks. arXiv preprint arXiv:1906.08649 2/23
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Model predictive control
on learned models
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MPC on Learnt models

Standard Model-Based RL

obs;— =
a;— T Ob8t+1

forward model

obs; — -
a— R [~ rewardyq

reward model

» The models can be used to predict a trajectory and its return “in imagination”

» If T' is stochastic, irreducible aleatoric uncertainty

» Do not predict too far away in time (typically, 5 steps)

»> When obs; are images, need for representation learning — latent state z
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MPC on Learnt models

Learning models for image-based MPC
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latent dynamics

reward model

» The dynamics is learnt in a latent space from z; = hgy(0bs;)

» Then all other learning components get the latent state as input

» Latent dynamics is learnt with the consistency loss
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|—MPC on Learnt models
: :

Consistency loss
ObSi —>0b5i+1
ha hO
2
a; — d9

loss = ||dg(2;, a;) — hg(obs;i1)||?

» Two ways to predict the next latent state should give consistent results

» Now that we have a model, how can we generate efficient actions?

DA
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Finding accurate actions with MPC

Generating efficient sequences of actions

v

With the latent dynamics, one can evaluate trajectories “in imagination”,
without sampling in the environment

The next latent state is predicted through the latent dynamics model
Trajectory values are estimated at the reached horizon from some measure
(e.g. sum of immediate rewards)

The CEM is used to optimize sequences of actions

vvYyyVvyy

Initial sequences of actions are drawn in some way (e.g. randomly)
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Finding accurate actions with MPC

Reminder: cross-entropy method
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1.Start with the normal distribution
2
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2. Generate N vectors with this
distribution

3. Evaluate each vector and select a
proportion p of the best ones. These
vectors are represented in grey

4. Compute the mean and standard
deviation of the best vectors

5. Add a noise term to the standard
deviation, to avoid premature
convergence to a local optimum

» Here, an example where 0 is 2D

Marin, and Sigaud, O. (2012) Towards fast and adaptive optimal control policies for robots: A direct policy search approach,

Proceedings conference Robotica, pp. 21-26

6. This mean and standard deviation
define the normal distribution of
next iteration
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Finding accurate actions with MPC

CMA-ES vs CEM
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The stronger the yellow, the higher the return
CMA-ES uses many additional tricks
CEM is more used in RL problems
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Hansen, N. & Auger, A. (2011) CMA-ES: evolution strategies and covariance matrix adaptation. In Proceedings of the 13th

annual conference companion on Genetic and evolutionary computation (pp. 991-1010) - .
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Finding accurate actions with MPC

Model Predictive Control (MPC)

new
2t

Some sequence of actions is selected based on the value
The first action is played (or the few first actions): receding horizon

MPC is run again from the new current state

vvyYyypy

And so on until the end of the episode

Kouvaritakis, B. and Cannon, M. (2016) Model predictive control. Switzerland: Springer International Publishing, 38:13-56

Kwon, W. H. and Han, S. (2005) Receding Horizon Control: Model Predictive Control for State Models. Springer
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Finding accurate actions with MPC

Weaknesses of MPC

Dynamics Model Trajectory Propagation Planning via Model Predictive Control

P> PETS presents itself as the first paper combining CEM and MPC

» But PETS uses ensembling over models to measure uncertainty
» Makes it possible to distinguish aleatoric and epistemic uncertainty, and
perform active learning
» The combination of MPC 4+ CEM to optimize sequences of actions:
» Suffers from long inference time (evaluating many sequences)
» Particularly true if starting from random actions
» Does not predict beyond the MPC horizon

» The TD part improves this

¢ wELGoTs

@ Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018) Deep reinforcement learning in a handful of trials using probabilistic Mo

dynamics models. Advances in neural information processing systems, 31
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Adding temporal
difference learning
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Adding Temporal Differences: synergies

Adding Temporal Differences: synergies

better

sampling .
Zﬁ— at Z" Qo(zt, ar) MPC :

better

policy value model Gata
\ Q0

» TD-MPC adds a temporal difference component to MPC, with three synergistic
mechanisms:

1. The MPC trajectories are used to improve policy anc critic learning

2. The policy is used to warm-start the MPC process with good actions

3. The action value function Qg (z,a) is used to evaluate MPC trajectories
beyond the horizon

> Resulting advantages:

» Main point: A policy network triggers actions — much faster inference
» The combination is less myopic than a single action policy

» The combination is less myopic than a limited horizon MPC

» The MPC part is faster and performs better
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Adding Temporal Differences: synergies

TD from CEM trajectories
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Several approaches:

» Simple behavioral cloning of CEM trajectories

> Intermediate: RWR or AWR on CEM trajectories

» Pure TD learning from a buffer of CEM trajectories
CEM trajectories help with more efficient policy learning samples
Less myopic than standard TD learning

Peters, J. and Schaal, S. (2007) Reinforcement learning by reward-weighted regression for operational space control. In

Ghahramani, Z., editor, Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvalli
Oregon, USA, June 20-24, 2007, volume 227 of ACM International Conference Proceeding Series, pages 745-750. ACM

Peng, X. B., Kumar, A., Zhang, G., and Levine, S. Advantage-weighted regression: Si"‘El,e and s%able off-policy reinforceme
learning. arXiv preprint arXiv:1910.00177, 2019
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Adding Temporal Differences: synergies
:

Warm-starting MPC

« |

policy

ag
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The TD policy suggests appropriate actions
More efficient than random sampling

In PHIHP, we take a mix between random actions and policy actions
learning. arXiv preprint arXiv:2407.02217

El Asri, Z., Sigaud, O., and Thome, N. (2024) Physics-informed model and hybrid planning for efficient Dyna-style reinforcement l
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Adding Temporal Differences: synergies

Watching beyond the horizon

Q(2t+H, arH)

> The value of trajectories is estimated from the action value model at the horizon
» The action value model summarizes the return of the rest of the episode
» A kind of improved n-step return (bias against variance)

P Less myopic than PETS-like approaches
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Putting everything together

Full TD-MPC models: Losses

Zt —
obs, ho — 2t att— Ry — rewardsyq
representation reward model 2 — ™ |— as
2t — . 2t —] olic
a,— 9o | = Qo —Qo(2, a1) policy
latent dynamics value model

» Samples from a replay buffer {obs;, a;, 7i4+1,0bs;4+1}
> Get z; = hg(obs;)
> Losses:
> Latent state consistency: ||dg(2i,a;) — hg(obsi+1)||?
» Reward: ||1‘29(Zi7 ai) — 7"i+1||2
> Value: [|riy1 +7Qo(zit1,mo(zi41)) — Qo(zi, as)||* (DDPG-like)
» TOLD model: Task-Oriented Latent Dynamics

18 /23



Evolution + deep RL
Putting everything together

A clearer view: representation learning backbone

representation
backbone
hg

obsy —]

| dg I— Zt+1
rewardy

Qe(ztaat)

L(0) = c1||Ro (2, a:) — riga||® + callrizs +vQo (zig1, mo(2i41)) — Qolzi, ai)||?

+ c3||dg(2s, ai) — hg(obsiy1)]|?

> All gradients naturally backpropagate into the representation backbone

» ¢y, c2 and c3 are additional hyper-parameters

(1)

ISIR

hed
DESSISTEMES
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Putting everything together

Other option: independent modules

24 —]

obsy he — 2t att— Ry — rewardsyq

representation reward model 2z — mg |— a:
At — L 2 2t — olic

a;— dg t+1 ar— Qo —Qolzt,ar) policy
latent dynamics value model

» Learn hg(obs;) just with the consistency loss
> Freeze hg(obs;) when backpropagating other losses
» Particularly obvious when learning from states (no hy backbone)

» Comparing both options is missing

ISIR

hed
DESSISTEMES
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Implementation details

vy
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Uses LayerNorm in the TD part (useful recipe in many recent RL algorithms)

For image-based experiments, hg is a 4-layer CNN with kernel sizes (7, 5, 3, 3),
stride (2, 2, 2, 2), and 32 filters per layer.

Might use more modern vision modules: DINOv2, ViT, ResNet, SiglLip...
Uses Prioritized Experience replay. Removed in TD-MPC2.
Many hyper-parameters...

More details in the paper
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TD-MPC2
Multi-task Single-task
DMControl & Meta—World DMcControl Meta-World Maniskill2
o 80 tasks 100+ 39 tasks 100 50 tasks 100 5 tasks
317M
a8M 75 75 o tH o
2 s g 50 g
g 50 50 £ . E
g — TD-MPC2 25 25 1]
N 40 — TD-MPC L ti yoSuite Pick YCB
E 100 7 tasks . 10 tasks . 1 task
g 20 751 m m m
z 50 z 50 z
504 o o (TS
0 T £ 25 £ 25 E =
M 10M 100M 1B 25'% © 9 =z g8
Model parameters 04 0 ol S
> Applied to large NNs with LayerNorm and SimNorm (5M vs 1M params)
» Uses SAC instead of TD3, no prioritized exp. replay, ensemble of Q functions...
>

Conditioned on a task embedding

Hansen, N., Su, H., and Wang, X. (2023) TD-MPC2: Scalable, robust world models for continuous control. arXiv preprint
arXiv:2310.16828
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Any question?

Send mail to: Olivier.Sigaud@isir.upmc.fr



Olivier.Sigaud@isir.upmc.fr
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