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Evolution + deep RL

Outline

▶ A SoTA method for robot learning (sample efficient, time efficient, performs well)
▶ A flexible, multi-component algorithm: MBRL + Evo + MFRL + rep. learning
▶ Lots of inner synergies between components
▶ An older instance is poplin
▶ Roadmap:

▶ We start with the model-based MPC component
▶ Then we add the temporal difference component and outline synergies

Hansen, N., Wang, X., and Su, H. (2022) Temporal difference learning for model predictive control. arXiv preprint

arXiv:2203.04955

Wang, T. and Ba, J. (2019) Exploring model-based planning with policy networks. arXiv preprint arXiv:1906.08649 2 / 23
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MPC on Learnt models

Standard Model-Based RL

▶ The models can be used to predict a trajectory and its return “in imagination”

▶ If T is stochastic, irreducible aleatoric uncertainty

▶ Do not predict too far away in time (typically, 5 steps)

▶ When obst are images, need for representation learning → latent state z
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Evolution + deep RL

MPC on Learnt models

Learning models for image-based mpc

▶ The dynamics is learnt in a latent space from zi = hθ(obsi)

▶ Then all other learning components get the latent state as input

▶ Latent dynamics is learnt with the consistency loss
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MPC on Learnt models

Consistency loss

▶ Two ways to predict the next latent state should give consistent results

▶ Now that we have a model, how can we generate efficient actions?
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Finding accurate actions with mpc

Generating efficient sequences of actions

▶ With the latent dynamics, one can evaluate trajectories “in imagination”,
without sampling in the environment

▶ The next latent state is predicted through the latent dynamics model

▶ Trajectory values are estimated at the reached horizon from some measure

▶ (e.g. sum of immediate rewards)

▶ The cem is used to optimize sequences of actions

▶ Initial sequences of actions are drawn in some way (e.g. randomly)
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Finding accurate actions with mpc

Reminder: cross-entropy method

1.Start with the normal distribution 

N (μ,σ²)

2. Generate N vectors with this

distribution

3. Evaluate each vector and select a 

proportion ρ of the best ones. These 

vectors are represented in grey 

4. Compute the mean and standard

deviation of the best vectors

5. Add a noise term to the standard 

deviation, to avoid premature 

convergence to a local optimum

6. This mean and standard deviation

define the normal distribution of

 next iteration

▶ Here, an example where θ is 2D

Marin, and Sigaud, O. (2012) Towards fast and adaptive optimal control policies for robots: A direct policy search approach,

Proceedings conference Robotica, pp. 21-26
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Finding accurate actions with mpc

CMA-ES vs CEM

▶ The stronger the yellow, the higher the return
▶ cma-es uses many additional tricks
▶ cem is more used in RL problems

Hansen, N. & Auger, A. (2011) CMA-ES: evolution strategies and covariance matrix adaptation. In Proceedings of the 13th

annual conference companion on Genetic and evolutionary computation (pp. 991–1010)
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Finding accurate actions with mpc

Model Predictive Control (mpc)

▶ Some sequence of actions is selected based on the value

▶ The first action is played (or the few first actions): receding horizon

▶ mpc is run again from the new current state

▶ And so on until the end of the episode

Kouvaritakis, B. and Cannon, M. (2016) Model predictive control. Switzerland: Springer International Publishing, 38:13–56

Kwon, W. H. and Han, S. (2005) Receding Horizon Control: Model Predictive Control for State Models. Springer
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Finding accurate actions with mpc

Weaknesses of mpc

▶ pets presents itself as the first paper combining cem and mpc

▶ But pets uses ensembling over models to measure uncertainty
▶ Makes it possible to distinguish aleatoric and epistemic uncertainty, and

perform active learning

▶ The combination of mpc + cem to optimize sequences of actions:

▶ Suffers from long inference time (evaluating many sequences)
▶ Particularly true if starting from random actions
▶ Does not predict beyond the mpc horizon

▶ The TD part improves this

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018) Deep reinforcement learning in a handful of trials using probabilistic

dynamics models. Advances in neural information processing systems, 31
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Adding Temporal Differences: synergies

Adding Temporal Differences: synergies

▶ td-mpc adds a temporal difference component to mpc, with three synergistic
mechanisms:

1. The mpc trajectories are used to improve policy anc critic learning
2. The policy is used to warm-start the mpc process with good actions
3. The action value function Qθ(z, a) is used to evaluate mpc trajectories

beyond the horizon

▶ Resulting advantages:

▶ Main point: A policy network triggers actions → much faster inference
▶ The combination is less myopic than a single action policy
▶ The combination is less myopic than a limited horizon mpc
▶ The mpc part is faster and performs better
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Adding Temporal Differences: synergies

TD from cem trajectories

▶ Several approaches:
▶ Simple behavioral cloning of cem trajectories
▶ Intermediate: rwr or awr on cem trajectories
▶ Pure TD learning from a buffer of cem trajectories

▶ cem trajectories help with more efficient policy learning samples
▶ Less myopic than standard TD learning

Peters, J. and Schaal, S. (2007) Reinforcement learning by reward-weighted regression for operational space control. In

Ghahramani, Z., editor, Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvallis,
Oregon, USA, June 20-24, 2007, volume 227 of ACM International Conference Proceeding Series, pages 745–750. ACM

Peng, X. B., Kumar, A., Zhang, G., and Levine, S. Advantage-weighted regression: Simple and scalable off-policy reinforcement

learning. arXiv preprint arXiv:1910.00177, 2019
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Adding Temporal Differences: synergies

Warm-starting mpc

▶ The TD policy suggests appropriate actions

▶ More efficient than random sampling

▶ In phihp, we take a mix between random actions and policy actions

El Asri, Z., Sigaud, O., and Thome, N. (2024) Physics-informed model and hybrid planning for efficient Dyna-style reinforcement

learning. arXiv preprint arXiv:2407.02217
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Adding Temporal Differences: synergies

Watching beyond the horizon

▶ The value of trajectories is estimated from the action value model at the horizon

▶ The action value model summarizes the return of the rest of the episode

▶ A kind of improved n-step return (bias against variance)

▶ Less myopic than pets-like approaches
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Putting everything together

Full td-mpc models: Losses

▶ Samples from a replay buffer {obsi, ai, ri+1, obsi+1}
▶ Get zi = hθ(obsi)

▶ Losses:

▶ Latent state consistency: ||dθ(zi, ai)− hθ(obsi+1)||2
▶ Reward: ||Rθ(zi, ai)− ri+1||2
▶ Value: ||ri+1 + γQθ(zi+1, πθ(zi+1))−Qθ(zi, ai)||2 (DDPG-like)

▶ TOLD model: Task-Oriented Latent Dynamics
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Putting everything together

A clearer view: representation learning backbone

L(θ) = c1||Rθ(zi, ai)− ri+1||2 + c2||ri+1 + γQθ(zi+1, πθ(zi+1))−Qθ(zi, ai)||2

+ c3||dθ(zi, ai)− hθ(obsi+1)||2 (1)

▶ All gradients naturally backpropagate into the representation backbone

▶ c1, c2 and c3 are additional hyper-parameters

19 / 23



Evolution + deep RL

Putting everything together

Other option: independent modules

▶ Learn hθ(obsi) just with the consistency loss

▶ Freeze hθ(obsi) when backpropagating other losses

▶ Particularly obvious when learning from states (no hθ backbone)

▶ Comparing both options is missing
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Putting everything together

Implementation details

▶ Uses LayerNorm in the TD part (useful recipe in many recent RL algorithms)

▶ For image-based experiments, hθ is a 4-layer cnn with kernel sizes (7, 5, 3, 3),
stride (2, 2, 2, 2), and 32 filters per layer.

▶ Might use more modern vision modules: DINOv2, ViT, ResNet, SigLip...

▶ Uses Prioritized Experience replay. Removed in td-mpc2.

▶ Many hyper-parameters...

▶ More details in the paper
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Putting everything together

td-mpc2

▶ Applied to large NNs with LayerNorm and SimNorm (5M vs 1M params)

▶ Uses sac instead of td3, no prioritized exp. replay, ensemble of Q functions...

▶ Conditioned on a task embedding

Hansen, N., Su, H., and Wang, X. (2023) TD-MPC2: Scalable, robust world models for continuous control. arXiv preprint

arXiv:2310.16828
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Putting everything together

Any question?

Send mail to: Olivier.Sigaud@isir.upmc.fr
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