Being Actor-Critic

Olivier Sigaud

Sorbonne Université http://people.isir.upmc.fr/sigaud

Being Actor-Critic

Being truly actor-critic

Being actor-critic

Being actor-critic is using bootstrap

- \blacktriangleright PG methods with V, Q or A baselines contain a policy and a critic
- Are they actor-critic?
- Only if the critic is learned from bootstrap!

э

イロト スピト メヨト メヨト

Being Actor-Critic

- "Although the REINFORCE-with-baseline method learns both a policy and a state-value function, we do not consider it to be an actor-critic method because its state-value function is used only as a baseline, not as a critic."
- "That is, it is not used for bootstrapping (updating the value estimate for a state from the estimated values of subsequent states), but only as a baseline for the state whose estimate is being updated."
- "This is a useful distinction, for only through bootstrapping do we introduce bias and an asymptotic dependence on the quality of the function approximation."

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction (Second edition). MIT Press, 2018, p. 331

Monte Carlo versus Bootstrap approaches

Three options:

- MC direct gradient: Compute the true $Q^{\pi_{\theta}}$ over each trajectory
- MC model: Compute a model Q^{πθ}_φ over rollouts using MC regression, throw it away after each policy gradient step
- Bootstrap: Update a model Q^π_φ over samples using TD methods, keep it over policy gradient steps
- Sutton&Barto: Only the latter ensures "asymptotic convergence" (when stable)

・ロト ・回ト ・ヨト ・ヨト

5 / 7

Single step updates

► With a model $\psi_t(s_t^{(i)}, a_t^{(i)})$, we can compute $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$ over a single state using: $\nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(a_t^{(i)}|s_t^{(i)})\psi_t(s_t^{(i)}, a_t^{(i)})$

• With
$$\psi_t = \hat{Q}^{\pi_{\theta}}_{\phi}(s_t^{(i)}, a_t^{(i)})$$
 or $\psi_t = \hat{A}^{\pi_{\theta}}_{\phi}(s_t^{(i)}, a_t^{(i)})$

- ▶ This is true whatever the way to obtain $\hat{Q}^{\pi \theta}_{\phi}$ or $\hat{A}^{\pi \theta}_{\phi}$
- Crucially, samples used to update $\hat{Q}^{\pi\theta}_{\phi}$ or $\hat{A}^{\pi\theta}_{\phi}$ do not need to be the same as samples used to compute $\nabla_{\theta} J(\theta)$
- This defines the shift from policy gradient to actor-critic
- This is the crucial step to become off-policy
- However, using bootstrap comes with a bias

ヘロン ヘロン ヘビン ヘビン

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

Sutton, R. S. and Barto, A. G. (2018).

Reinforcement Learning: An Introduction (Second edition). MIT Press.

