Reinforcement Learning 3. Dynamic programming

Olivier Sigaud

Sorbonne Université http://people.isir.upmc.fr/sigaud

Dynamic Programming

Dynamics Programming

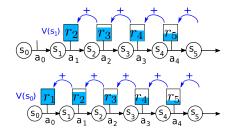
- Once we have defined an MDP
- Dynamic programming methods can find the optimal policy
- Assuming they know everything about the MDP
- Reinforcement Learning applies when the transition and reward functions are unknown
- ▶ To define dynamic programming methods, we need value functions

Value and action value functions

- ▶ The value function $V^{\pi} : S \to \mathbb{R}$ records the agregation of reward on the long run for each state (following policy π). It is a vector with one entry per state
- The action value function Q^π : S × A → ℝ records the agregation of reward on the long run for doing each action in each state (and then following policy π). It is a matrix with one entry per state and per action
- \blacktriangleright In the remainder, we focus on V, trivial to transpose to Q

イロン 不同 とくほど 不良 とう

Bellman equation over a Markov chain: recursion



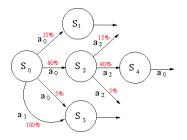
Given the discounted reward agregation criterion:

• $V(s_0) = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + ...$ • $V(s_0) = r_1 + \gamma (r_2 + \gamma r_3 + \gamma^2 r_4 + ...)$ • $V(s_0) = r_1 + \gamma V(s_1)$

• More generally $V(s_t) = r_{t+1} + \gamma V(s_{t+1})$

・ロト ・回ト ・ヨト ・ヨト

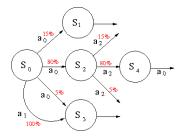
Bellman equation: general case



- Generalisation of $V(s_t) = r_{t+1} + \gamma V(s_{t+1})$ over all possible trajectories
- The expectation of a random variable is the sum of the realizations weighted by their probabilities
- The realizations are the next states
- Deterministic π : $V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s'} p(s'|s, \pi(s)) V^{\pi}(s')$

イロト イヨト イヨト イヨト

Bellman equation: general case



- Generalisation of $V(s_t) = r_{t+1} + \gamma V(s_{t+1})$ over all possible trajectories
- The expectation of a random variable is the sum of the realizations weighted by their probabilities
- The realizations are the next states
- Stochastic π : $V^{\pi}(s) = \sum_{a} \pi(a|s)[r(s,a) + \gamma \sum_{s'} p(s'|s,a)V^{\pi}(s')]$

イロト イヨト イヨト イヨト

Recursive operators and convergence

- If we define an operator T such that $X_{n+1} \leftarrow TX_n$
- lt T is contractive, then through repeated application of T, X_n will converge to some fixed point
- For instance, if T divides by 2, X_n converges to 0

The Bellman optimality operator (Value Iteration)

• We call Bellman optimality operator (noted T^*) the application

$$V_{n+1}(s) \leftarrow \max_{a \in A} \left[r(s,a) + \gamma \sum_{s'} p(s'|s,a) V_n(s') \right]$$

▶ If $\gamma < 1$, T^* is contractive

- By iterating, computes the value of the current policy
- ▶ The optimal value function is the fixed-point of T^* : $V^* = T^*V^*$
- ▶ Value iteration: $V_{n+1} \leftarrow T^*V_n$

Puterman, M. L. (2014) Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons.

The Bellman operator (Policy Iteration)

• We call Bellman operator (noted T^{π}) the application

$$V_{n+1}^{\pi}(s) \leftarrow r(s,\pi(s)) + \gamma \sum_{s'} p(s'|s,\pi(s)) V_n^{\pi}(s')$$

- If $\gamma < 1$, T is contractive
- Converges to optimal value and policy
- Policy Iteration:

$$V_{n+1}^{\pi} \leftarrow T^{\pi} V_n^{\pi}$$

▶ Policy improvement: $\forall s \in S, \pi'(s) \leftarrow \arg \max_{a \in A} \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V_n^{\pi}(s')]$ or

 $\forall s \in S, \pi'(s) \leftarrow \arg\max_{a \in A} [r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_n^{\pi}(s')]$

 \blacktriangleright Note: $\sum_{s',r} p(s',r|s,a)[r+\gamma V(s')] = r + \gamma \sum_{s'} p(s'|s,a) V(s')$

イロト イヨト イヨト イヨト

Value Iteration: the algorithm

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

$$\begin{vmatrix} \Delta \leftarrow 0 \\ | \text{ Loop for each } s \in S: \\ | v \leftarrow V(s) \\ | V(s) \leftarrow \max_a \sum_{s',r} p(s',r \,|\, s,a) \left[r + \gamma V(s')\right] \\ | \Delta \leftarrow \max(\Delta, |v - V(s)|) \\ \text{until } \Delta < \theta \\ \end{vmatrix}$$
Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r \,|\, s,a) \left[r + \gamma V(s')\right]$

► Taken from Sutton & Barto, 2018, p. 83
► Reminder:
$$\sum_{s',r} p(s',r|s,a)[r+\gamma V(s')] = r + \gamma \sum_{s'} p(s'|s,a)V(s')$$

0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0		0.0
0.0		0.0		0.0
0.0	0.0	0.0		1

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \Big[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \Big]$$

0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0		0.0
0.0		0.0		0.9
0.0	0.0	0.0		1

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \Big[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \Big]$$

IS

æ

0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0		0.81
0.0		0.0		0.9
0.0	0.0	0.0		1

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \Big[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \Big]$$

0.0	0.0	0.0	0.0	0.73
0.0	0.0	0.0		0.81
0.0		0.0		0.9
0.0	0.0	0.0		1

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \Big[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \Big]$$

0.0	0.0	0.0	0.66	0.73
0.0	0.0	0.0		0.81
0.0		0.0		0.9
0.0	0.0	0.0		1

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \right]$$

0.0	0.0	0.59	0.66	0.73
0.0	0.0	0.0		0.81
0.0		0.0		0.9
0.0	0.0	0.0		1

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \Big[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \Big]$$

0.0	0.53	0.59	0.66	0.73
0.0	0.0	0.53		0.81
0.0		0.0		0.9
0.0	0.0	0.0		1

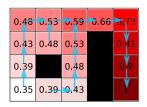
$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \Big[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \Big]$$

0.48	0.53	0.59	0.66	0.73
0.43	0.48	0.53		0.81
0.39		0.48		0.9
0.35	0.39	0.43		1

$$\forall s \in S, V_{i+1}(s) \leftarrow \max_{a \in A} \left[r(s, a) + \gamma \sum_{s'} p(s'|s, a) V_i(s') \right]$$

ISTITUT DES SYSTÈMES INTELLIGENTS ET DE ROBOTIQUE

э

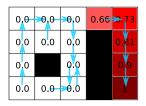


We have iterated on values, and determined a policy out of it (without necessarily representing it if using Q(s, a))

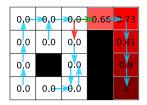
Policy Iteration: the algorithm

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$ 1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in S$ 2. Policy Evaluation LOOD: $\Delta \leftarrow 0$ Loop for each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{s', s} p(s', r \mid s, \pi(s)) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number determining the accuracy of estimation) 3. Policy Improvement policy-stable $\leftarrow true$ For each $s \in S$: old-action $\leftarrow \pi(s)$ $\pi(s) \leftarrow \arg\max_{a} \sum_{s' \mid r} p(s', r \mid s, a) [r + \gamma V(s')]$ If old-action $\neq \pi(s)$, then policy-stable \leftarrow false If *policy-stable*, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

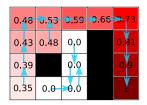
Taken from Sutton & Barto, 2018, p. 80
Note: \$\sum_{s',r} p(s', r|s, a)[r + \gamma V(s')] = r + \gamma \sum_{s'} p(s'|s, a)V(s')\$



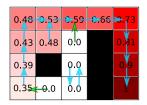
 $\forall s \in S, V_i(s) \leftarrow evaluate(\pi_i(s))$



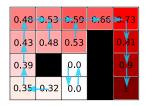
 $\forall s \in S, \pi_{i+1}(s) \leftarrow improve(\pi_i(s), V_i(s))$



 $\forall s \in S, V_i(s) \leftarrow evaluate(\pi_i(s))$

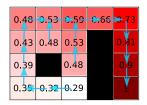


 $\forall s \in S, \pi_{i+1}(s) \leftarrow improve(\pi_i(s), V_i(s))$

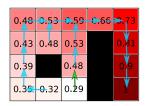


 $\forall s \in S, V_i(s) \leftarrow evaluate(\pi_i(s))$

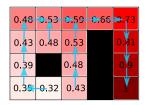
 $\forall s \in S, \pi_{i+1}(s) \leftarrow improve(\pi_i(s), V_i(s))$



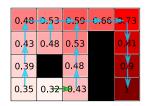
 $\forall s \in S, V_i(s) \leftarrow evaluate(\pi_i(s))$



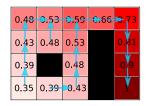
 $\forall s \in S, \pi_{i+1}(s) \leftarrow improve(\pi_i(s), V_i(s))$



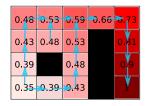
 $\forall s \in S, V_i(s) \leftarrow evaluate(\pi_i(s))$



 $\forall s \in S, \pi_{i+1}(s) \leftarrow improve(\pi_i(s), V_i(s))$

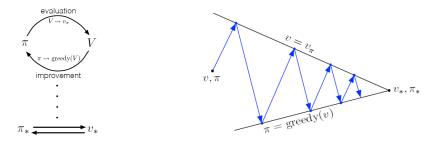


 $\forall s \in S, V_i(s) \leftarrow evaluate(\pi_i(s))$



Here we have managed a policy and a value representations at all steps

Generalized Policy Iteration



- Policy iteration evaluates each intermediate policy up to convergence. This is slow.
- \blacktriangleright Instead, evaluate the policy for N iterations, or even not for all states.
- Asynchronous dynamics programming: decoupling policy evaluation and improvement
- ▶ Taken from Sutton & Barto, 2018

FTOF ROBOT

イロト イヨト イヨト イヨト

Any question?

Send mail to: Olivier.Sigaud@isir.upmc.fr

・ロト ・回 ト ・ヨト ・ヨト

Puterman, M. L. (2014).

Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons.

