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Once we have defined an MDP
Dynamic programming methods can find the optimal policy
Assuming they know everything about the MDP

Reinforcement Learning applies when the transition and reward functions
are unknown

To define dynamic programming methods, we need value functions
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Value and action value functions
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» The value function V™ : S — IR records the agregation of reward on the
long run for each state (following policy 7). It is a vector with one entry
per state

» The action value function Q™ : S x A — IR records the agregation of
reward on the long run for doing each action in each state (and then - o
following policy 7). It is a matrix with one entry per state and per actlo |S|R

v
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» In the remainder, we focus on V/, trivial to transpose to ()
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Bellman equation over a Markov chain: recursion
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Given the discounted reward agregation criterion:
> V(so) =r1+9r2 +9°rs + 7% + ...
> V(so) =r1+7(r2 +yrs +7*ra + ...)
> V(so) =r1+9V(s1)
> More generally V(s:) = rep1 + 7V (Se41)
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Bellman equation: general case

> Generalisation of V' (s¢) = re41 + 7V (s¢4+1) over all possible trajectories

» The expectation of a random variable is the sum of the realizations
weighted by their probabilities

» The realizations are the next states
» Deterministic m: V7 (s) = r(s,7(s)) +v > . p(s'|s,7(s))V7(s")
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Bellman equation: general case

> Generalisation of V' (s¢) = re41 + 7V (s¢4+1) over all possible trajectories

» The expectation of a random variable is the sum of the realizations
weighted by their probabilities

» The realizations are the next states
> Stochastic m: V7™(s) = >, w(als)[r(s,a) +v >, p(s'|s,a)V7(s")]
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:
Recursive operators and convergence

» |f we define an operator T such that X, +1 + TX,

» |t T is contractive, then through repeated application of T', X, will
converge to some fixed point

» For instance, if T divides by 2, X,, converges to 0
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The Bellman optimality operator (Value Iteration)

» We call Bellman optimality operator (noted T™) the application

Vit (s) < max|r(s,a) + 7Y pls'|s, a)Va(s))]

ac

If v < 1, T™ is contractive
By iterating, computes the value of the current policy
The optimal value function is the fixed-point of T*: V* =T*V"

vvyyvyy

Value iteration: V11 < T*V,

Puterman, M. L. (2014) Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons.
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The Bellman operator (Policy Iteration)

> We call Bellman operator (noted 7™) the application

Viii(s) < r(s,m(s) +’YZP Is,m(s))Vir (")

» If v < 1, T is contractive

» Converges to optimal value and policy
» Policy Iteration:
» Policy evaluation:
Vi, < TTVT

» Policy improvement:

Vs € S,m'(s) < argmaxqea y_ . p(s'|s,a)[r(s,a) + vV, 7 (s')]

or

Vs € S,m'(s)  argmaxgealr(s,a) + 72, p(s'ls, a) VT (s)]

> Note: 32, p(s's7ls,a)[r +AV(s)] =7+ 732, p(s'ls,a)V(s')
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Value Iteration: the algorithm

Value Iteration, for estimating 7 =~ 7,

Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V(s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:

| A+0

| Loop for each s € 8:

| v V(s)

| V(s) « maxq o, . p(s', 7| s,a) [r + V()]
| A max(A, v — V(s)])

until A < 6

Output a deterministic policy, m ~ 7, such that
m(s) = argmax, >, p(s',r|s,a) [r + 7V ()]

» Taken from Sutton & Barto, 2018, p. 83
> Reminder: Y, p(s/,7ls, a)[r + 4V ()] =7 + v 3., p(s'ls, @)V (s)
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Value Iteration in practice

acA

Vs € S, Vig1(s) Inax[’r(s,a) + */Zp(s/|s,a)vi(s/)}
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Value Iteration in practice

acA

Vs € S, Vig1(s) Inax[’r(s,a) + 72p(5/|s,a)\/¢(s/)}

¥ a1
Ve

e |S|R,
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Value Iteration in practice

Vs € 8, Vi (s) - max|r(s,a) + (s s, a)Vi(s)

¥ a1
Ve

e |S|R,
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Value Iteration in practice

acA

Vs € S, Viya(s) < max [7-(5, )+ p(s']s, a)Vi(s)]

o °

/

e |S|R,
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Value Iteration in practice

Vs € 8, Vi (s) - max|r(s,a) £ (s s, a)Vi(s)]
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Vs € 8, Vi (s) - max|r(s,a) £ (s s, a)Vi(s)]
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Value Iteration in practice

Vs € 8, Vi (s) - max|r(s, a) + (s s, a)Vi(s)
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Value Iteration in practice

We have iterated on values, and determined a policy out of it (without
necessarily representing it if using Q(s, a))
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Policy Iteration: the algorithm

1. Initialization
V(s) € R and w(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Loop:
A0
Loop for each s € 8:
v+ V(s)
V(s) « Yo, p(s' r|s.m(s)) [7' + ';/V(s’)]
A max(A, |v —V(s)])
until A < 6 (a small positive number determining the accuracy of estimation)

o

. Policy Improvement
policy-stable < true
For each s € 8:
old-action < 7 (s)
7(s) « argmax, Yo, p(s',r]s.a)[r + 4V (s)]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V' ~ v, and 7 ~ 7,; else go to 2

» Taken from Sutton & Barto, 2018, p. 80
> Note: 3, p(s',rls,a)[r +yV(s)] =r+v3, p(s'ls,a)V(s)
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Policy Iteration in practice

Vs € S, Vi(s) + evaluate(m;(s))
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Policy Iteration in practice

Vs € S, mit1(s) « improve(m;(s), Vi(s))
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Policy Iteration in practice

Vs € S, Vi(s) « evaluate(m;(s))
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Policy Iteration in practice

Here we have managed a policy and a value representations at all steps
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Generalized Policy lteration

evaluation

Vs vg

T %4

7~ greedy(V)

improvement

: Vs T

P e—— 8

» Policy iteration evaluates each intermediate policy up to convergence.
This is slow.

» Instead, evaluate the policy for N iterations, or even not for all states.

» Asynchronous dynamics programming: decoupling policy evaluation and
improvement

» Taken from Sutton & Barto, 2018
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Any question?

Send mail to: Olivier.Sigaud@isir.upmc.fr



Olivier.Sigaud@isir.upmc.fr
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