e
Reinforcement Learning

Reinforcement Learning
3. Dynamic programming
Olivier Sigaud

Sorbonne Université
http://people.isir.upmc.fr/sigaud

e
Reinforcement Learning
|—Dynamics Programming

Dynamic
Programming

na
2/15

R

Reinforcement Learning

Dynamics Programming

Dynamics Programming

vvyyvyy

v

Once we have defined an MDP
Dynamic programming methods can find the optimal policy
Assuming they know everything about the MDP

Reinforcement Learning applies when the transition and reward functions
are unknown

To define dynamic programming methods, we need value functions

ISIR

hed
DESSISTEMES

3/15

Reinforcement Learning

Dynamics Programming

Value and action value functions

S W

» The value function V™ : S — IR records the agregation of reward on the
long run for each state (following policy 7). It is a vector with one entry
per state

» The action value function Q™ : S x A — IR records the agregation of
reward on the long run for doing each action in each state (and then - o
following policy 7). It is a matrix with one entry per state and per actlo |S|R

v

\ - QZESLJV

» In the remainder, we focus on V/, trivial to transpose to ()

4/15

Reinforcement Learning

Dynamics Programming

Bellman equation over a Markov chain: recursion

+ o+ o+ o+
FN F N F N F

V(sy) r oo [gec]
MQ— O-OLGLE)

+ + o+ o+ o+
NN N N Y

V(so) T Y
MMO HLHLOELE)

Given the discounted reward agregation criterion:
> V(so) =r1+9r2 +9°rs + 7% + ...
> V(so) =r1+7(r2 +yrs +7*ra + ...)
> V(so) =r1+9V(s1)
> More generally V(s:) = rep1 + 7V (Se41)

Reinforcement Learning

Dynamics Programming

Bellman equation: general case

> Generalisation of V' (s¢) = re41 + 7V (s¢4+1) over all possible trajectories

» The expectation of a random variable is the sum of the realizations
weighted by their probabilities

» The realizations are the next states
» Deterministic m: V7 (s) = r(s,7(s)) +v > . p(s'|s,7(s))V7(s")

6/15

Reinforcement Learning

Dynamics Programming

Bellman equation: general case

> Generalisation of V' (s¢) = re41 + 7V (s¢4+1) over all possible trajectories

» The expectation of a random variable is the sum of the realizations
weighted by their probabilities

» The realizations are the next states
> Stochastic m: V7™(s) = >, w(als)[r(s,a) +v >, p(s'|s,a)V7(s")]

6/15

e
Reinforcement Learning
|—Dynamics Programming

Bellman operators

:
Recursive operators and convergence

» |f we define an operator T such that X, +1 + TX,

» |t T is contractive, then through repeated application of T', X, will
converge to some fixed point

» For instance, if T divides by 2, X,, converges to 0

na
7/15

Reinforcement Learning
Dynamics Programming

Bellman operators

The Bellman optimality operator (Value Iteration)

» We call Bellman optimality operator (noted T™) the application

Vit (s) < max|r(s,a) + 7Y pls'|s, a)Va(s))]

ac

If v < 1, T™ is contractive
By iterating, computes the value of the current policy
The optimal value function is the fixed-point of T*: V* =T*V"

vvyyvyy

Value iteration: V11 < T*V,

Puterman, M. L. (2014) Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons.

Reinforcement Learning
Dynamics Programming

Bellman operators

The Bellman operator (Policy Iteration)

> We call Bellman operator (noted 7™) the application

Viii(s) < r(s,m(s) +’YZP Is,m(s))Vir (")

» If v < 1, T is contractive

» Converges to optimal value and policy
» Policy Iteration:
» Policy evaluation:
Vi, < TTVT

» Policy improvement:

Vs € S,m'(s) < argmaxqea y_ . p(s'|s,a)[r(s,a) + vV, 7 (s')]

or

Vs € S,m'(s) argmaxgealr(s,a) + 72, p(s'ls, a) VT (s)]

> Note: 32, p(s's7ls,a)[r +AV(s)] =7+ 732, p(s'ls,a)V(s')

R

Reinforcement Learning

Dynamics Programming

Algorithms

Value Iteration: the algorithm

Value Iteration, for estimating 7 =~ 7,

Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V(s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:

| A+0

| Loop for each s € 8:

| v V(s)

| V(s) « maxq o, . p(s', 7| s,a) [r + V()]
| A max(A, v — V(s)])

until A < 6

Output a deterministic policy, m ~ 7, such that
m(s) = argmax, >, p(s',r|s,a) [r + 7V ()]

» Taken from Sutton & Barto, 2018, p. 83
> Reminder: Y, p(s/,7ls, a)[r + 4V ()] =7 + v 3., p(s'ls, @)V (s)

Reinforcement Learning
Dynamics Programming
L Algorithms

Value Iteration in practice

acA

Vs € S, Vig1(s) Inax[’r(s,a) + */Zp(s/|s,a)vi(s/)}

Reinforcement Learning
Dynamics Programming
L Algorithms

Value Iteration in practice

acA

Vs € S, Vig1(s) Inax[’r(s,a) + 72p(5/|s,a)\/¢(s/)}

¥ a1
Ve

e |S|R,

11/15

Reinforcement Learning
Dynamics Programming
L Algorithms

Value Iteration in practice

Vs € 8, Vi (s) - max|r(s,a) + (s s, a)Vi(s)

¥ a1
Ve

e |S|R,

11/15

Reinforcement Learning
Dynamics Programming
L Algorithms

Value Iteration in practice

acA

Vs € S, Viya(s) < max [7-(5,)+ p(s']s, a)Vi(s)]

o °

/

e |S|R,

11/15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Value Iteration in practice

Vs € 8, Vi (s) - max|r(s,a) £ (s s, a)Vi(s)]

11/15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Value Iteration in practice

Vs € 8, Vi (s) - max|r(s,a) £ (s s, a)Vi(s)]

11/15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Value Iteration in practice

Vs € 8, Vi (s) - max|r(s, a) + (s s, a)Vi(s)

11/15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Value Iteration in practice

Vs € 8, Vi (s) - max|r(s, a) + (s s, a)Vi(s)

11/15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Value Iteration in practice

We have iterated on values, and determined a policy out of it (without
necessarily representing it if using Q(s, a))

11/15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Policy Iteration: the algorithm

1. Initialization
V(s) € R and w(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Loop:
A0
Loop for each s € 8:
v+ V(s)
V(s) « Yo, p(s' r|s.m(s)) [7' + ';/V(s’)]
A max(A, |v —V(s)])
until A < 6 (a small positive number determining the accuracy of estimation)

o

. Policy Improvement
policy-stable < true
For each s € 8:
old-action < 7 (s)
7(s) « argmax, Yo, p(s',r]s.a)[r + 4V (s)]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V' ~ v, and 7 ~ 7,; else go to 2

» Taken from Sutton & Barto, 2018, p. 80
> Note: 3, p(s',rls,a)[r +yV(s)] =r+v3, p(s'ls,a)V(s)

12 /15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Policy Iteration in practice

Vs € S, Vi(s) + evaluate(m;(s))

13/ 15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Policy Iteration in practice

Vs € S, mit1(s) « improve(m;(s), Vi(s))

13/ 15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Policy Iteration in practice

Vs € S, Vi(s) « evaluate(m;(s))

13/ 15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Policy Iteration in practice

Vs € S, mit1(s) « improve(m;(s), Vi(s))

13/ 15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Policy Iteration in practice

Vs € S, Vi(s) « evaluate(m;(s))

13/ 15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Policy Iteration in practice

Vs € S, mit1(s) « improve(m;(s), Vi(s))

13/ 15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Policy Iteration in practice

Vs € S, Vi(s) « evaluate(m;(s))

13/ 15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Policy Iteration in practice

Vs € S, mit1(s) « improve(m;(s), Vi(s))

13/ 15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Policy Iteration in practice

Vs € S, Vi(s) « evaluate(m;(s))

13/ 15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Policy Iteration in practice

Vs € S, mit1(s) « improve(m;(s), Vi(s))

13/ 15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Policy Iteration in practice

Vs € S, Vi(s) « evaluate(m;(s))

13/ 15

e
Reinforcement Learning

Dynamics Programming

Algorithms

Policy Iteration in practice

Here we have managed a policy and a value representations at all steps

13/ 15

R

Reinforcement Learning

Dynamics Programming

Algorithms

Generalized Policy lteration

evaluation

Vs vg

T %4

7~ greedy(V)

improvement

: Vs T

P e—— 8

» Policy iteration evaluates each intermediate policy up to convergence.
This is slow.

» Instead, evaluate the policy for N iterations, or even not for all states.

» Asynchronous dynamics programming: decoupling policy evaluation and
improvement

» Taken from Sutton & Barto, 2018

14 /15

Reinforcement Learning
Dynamics Programming

Algorithms

Any question?

Send mail to: Olivier.Sigaud@isir.upmc.fr

Olivier.Sigaud@isir.upmc.fr

Reinforcement Learning

References

Puterman, M. L. (2014).
Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons.

	Dynamics Programming
	Bellman operators
	Algorithms

	References

