
Reinforcement Learning

Reinforcement Learning
Deep Q Network

Olivier Sigaud

Sorbonne Université
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Reinforcement Learning

Parametrized representations

Parametrized representations

I If the state or action spaces become continuous, we need to represent a
function over a continuous domain

I We cannot enumerate all values
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Reinforcement Learning

Parametrized representations

Linear representations

I To represent a continuous function, use
features and a vector of parameters

I Learning tunes the weights

I Linear architecture: linear combination of
features

3 / 27



Reinforcement Learning

Parametrized representations

The case of (feedforward) neural networks

I Last layer: linear combination of features (as in linear architectures)

I Sigmoids instead of Gaussians: better split of space in high dimensions

I Weight of input layer(s): tuning basis functions

I Weight of output layer: regression

I The backprop algo tunes both output and hidden weights

I Discovers adequate features by itself in a large space
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Parametrized representations

General motivations for Deep RL

I Approximation with deep networks provided enough computational power
can be very accurate

I All processes rely on efficient backpropagation in deep networks

I Advanced gradient descent techniques (Adam, RMSProp, ...) play a key
role

I Available in CPU/GPU libraries: theano, caffe, ..., TensorFlow, pytorch

Kingma, D. P. & Ba, J. (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

5 / 27



Reinforcement Learning

dqn
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dqn

Early success

I The first world champion was using RL with neural networks

I But it was shown that RL with function approximation can diverge

Tesauro, G. (1995) Temporal difference learning and td-gammon. Communications of the ACM, 38(3):58–68

Baird, L. C. (1994) Reinforcement learning in continuous time: Advantage updating. Proceedings of the International Conference

on Neural Networks, Orlando, FL
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dqn

dqn: the breakthrough

I dqn: Atari domain, Nature paper, small discrete actions set

I Learned very different representations with the same tuning

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,

Ostrovski, G., et al. (2015) Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.
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dqn

The Q-network in dqn

state / action a0 a1 a2 a3
s0 0.66 0.88* 0.81 0.73
s1 0.73 0.63 0.9* 0.43
s2 0.73 0.9 0.95* 0.73
s3 0.81 0.9 1.0* 0.81
s4 0.81 1.0* 0.81 0.9
s5 0.9 1.0* 0.0 0.9

I Parametrized representation of the critic Qφ(st, at)

I The Q-network is the equivalent of the Q-Table (with an infinity of state
rows)

I Select action by finding the max (as in Q-learning)

I Limitation: requires one output neuron per action
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dqn

Learning the neural Q-function

I Supervised learning: minimize a loss-function, often the squared error
w.r.t. the output:

L(s, a) = (y∗(s, a)−Qφ(s, a))
2 (1)

with backprop on weights φ

I For each sample i, the Q-network should minimize the RPE:

δi = ri+1 + γmax
a

Qφ(si+1, a)−Qφ(si, ai)

I Thus, given a minibatch of N samples {si, ai, ri+1, si+1}, compute
yi = ri+1 + γmaxaQφ(si+1, a)
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Reinforcement Learning

dqn

Learning the neural Q-function

I In the tabular case, each Q-value is updated separately

I In the continuous function approximation setting, interdependencies

I Thus update φ by minimizing the (squared error) loss function

L = 1/N
∑
i

(yi −Qφ(si, ai))
2 (2)
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dqn

Learning the neural Q-function

I The neural network weights are updated so as to decrease all errors on
average

I Using many mini-batches, one gets global minimization over the whole
Q-function
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dqn

Trick 1: Stable Target Q-function

I The target yi = ri+1 + γmaxaQφ(si+1, a)) is itself a function of Q

I Thus this is not truly supervised learning, and this is unstable

I Key idea: “periods of supervised learning”

I Compute the loss function from a separate target network Q′φ′(...)

I So rather compute yi = ri+1 + γmaxaQ
′
φ′(si+1, a)

I φ′ is updated to φ only each K iterations
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dqn

Trick2: Replay buffer shuffling

I Agent samples are not independent and identically distributed (i.i.d.)
I Shuffling a replay buffer (RB) makes them more i.i.d.
I It improves a lot the sample efficiency
I Recent data in the RB come from policies close to the current one

Lin, L.-J. (1992) Self-Improving Reactive Agents based on Reinforcement Learning, Planning and Teaching. Machine Learning,

8(3/4), 293–321

de Bruin, T., Kober, J., Tuyls, K., & Babuška, R. (2015) The importance of experience replay database composition in deep

reinforcement learning. In Deep RL workshop at NIPS 2015

Zhang, S. & Sutton, R. S. (2017) A deeper look at experience replay. arXiv preprint arXiv:1712.01275
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Reinforcement Learning

ddqn

Maximization in RL

I Two maximization steps:
I In action selection:

π(s) ∼ argmax
a∈A

Q(s, a)

might be stochastic or contain some exploration
I In Q-learning, in the value update rule

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a∈A

Q(st+1, a)−Q(st, at)]
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ddqn

Maximization bias

I In action selection, a maximum over estimated Q(s, a) is performed

I “In these algorithms, a maximum over estimated values is used implicitly
as an estimate of the maximum value, which can lead to a significant
positive bias.”

I Example: imagine all true Q(s, a) values are null

Sutton, R. S. & Barto, A. G. (2018) Reinforcement Learning: An Introduction (Second edition). MIT Press
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ddqn

Over-estimation bias propagation

I Some initial bias cannot be prevented due to Q-Table initialization

I In Q-learning, due to the max operator, the maximization bias
propagates

I No propagation of under-estimation

I The same holds for ddpg without a max operator!

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint

arXiv:1802.09477
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ddqn

Double Q-learning

I Solution: using two Q-Tables, one for value estimation and one for action
selection

I a∗ = argmaxaQ1(a)

I Q2(a
∗) = Q2(argmaxaQ1(a)) unbiased estimate of Q(a∗)

I a′∗ = argmaxaQ2(a)

I Q1(a
′∗) = Q1(argmaxaQ2(a)) unbiased estimate of Q(a′∗)

I Randomly select one of each at all steps

Van Hasselt, H. (2010) Double q-learning. Advances in Neural Information Processing Systems, pages 2613–2621
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ddqn

Double Q-learning: results
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ddqn

Double-dqn

I The max operator in Q-learning results in the maximization bias

I Double Q-learning: use Q1 and Q2 functions

I Double-dqn: make profit of the target network: propagate on target
Q-network, select max on Q-network,

I Minor change with respect to dqn (one line of code)

I Converges twice faster

Van Hasselt, H., Guez, A., & Silver, D. (2015) Deep reinforcement learning with double q-learning. CoRR, abs/1509.06461
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Reinforcement Learning

Other tricks

Prioritized Experience Replay

I Samples with a greater TD error improve the critic faster

I Give them a higher probability of being selected

I Favors the replay of new (s, a) pairs (largest TD error), as in R−max
I Several minor hacks, and interesting discussion

I Converges twice faster

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015) Prioritized Experience Replay. arXiv preprint arXiv:1511.05952
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Other tricks

Advantage function

I Aφ(si, ai) = Qφ(si, ai)−maxaQφ(si, a)

I Corresponds to a regret for not performing the best action

I V (si) = maxaQφ(si, a)
I Why use it?

I Put forward by Baird to stabilize function approximation
I In the likelihood ratio view, corresponds to the optimal baseline (minimizing

variance)
I In compatible actor-critic architecture, corresponds to the natural gradient
I Link to minimizing the KL divergence between subsequent policies

Deisenroth, M. P., Neumann, G., Peters, J., et al. (2013) A survey on policy search for robotics. Foundations and Trends® in

Robotics, 2(1–2), 1–142
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Other tricks

Dueling networks

I Instead of
AφA(si, ai) = QφQ(si, ai)−maxaQφQ(si, a) = QφQ(si, ai)− VφV (si)

I Rather use QφQ(si, ai) = AφA(si, ai) + VφV (si)

I Note that Aφ(si, a
∗
i ) = 0

I Center around average A to stabilize: Q = V +A− average(A)
I Better captures some relevant aspects of a control task

I Similar idea in NAF with continuous actions

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., & de Freitas, N. (2015) Dueling network architectures for deep

reinforcement learning. arXiv preprint arXiv:1511.06581
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Other tricks

Rainbow

I A3C, distributional dqn and Noisy dqn presented later

I Combining all local improvements

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., & Silver, D.

(2017) Rainbow: Combining improvements in deep reinforcement learning. arXiv preprint arXiv:1710.02298
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Other tricks

Any question?

Send mail to: Olivier.Sigaud@isir.upmc.fr
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