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I UTD: Update to data

I High UTD ratio: update the policy (and the critic) further from the same
data

I Boost in performance on DQN, PPO and SAC, but with limitations

I An issue is the overestimation bias, another is overfitting to the sampled
data

Li, Q., Kumar, A., Kostrikov, I., and Levine, S. (2023) Efficient deep reinforcement learning requires regulating overfitting. arXiv

preprint arXiv:2304.10466
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TQC: Distributional estimation

I Using a distribution of estimates is more stable than a single estimate

I C51, d4pg, qr-dqn...

I TQC uses N critic heads to estimate a distribution of Q-values

I Taking the Q-value as a random variable rather than a maximum
likelihood estimate

Bellemare, M. G., Dabney, W., and Munos, R. (2017) A distributional perspective on reinforcement learning. arXiv preprint

arXiv:1707.06887
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Truncated Quantile Critics

I Each atom is a Q-value estimate

I To fight overestimation bias, TD3 and SAC take the min over two critics

I TQC truncates the higher quantiles

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overestimation bias with truncated

mixture of continuous distributional quantile critics. In International Conference on Machine Learning, pp. 5556–5566. PMLR,
2020
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Rationale: bias-variance diagram

I x-axis = bias, y-axis = variance

I Taking the min or the average over N networks is not flexible

I Truncating the higher quantiles results in getting closer to the optimal
policy
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Performance

I Top figure: Humanoid-v2

I From 5 to a single critic

I Outperforms SAC, easier to use
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Impact of truncation

I red = performance

I blue = distribution of error

I The optimal number of truncated quantiles is not always the same
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DroQ: Dropout and ensembling

I REDQ: Ensembling from random networks

I DroQ: Dropout, Layer Normalization and ensembling

Chen, X., Wang, C., Zhou, Z., and Ross, K. (2021) Randomized ensembled double Q-learning: Learning fast without a model.

arXiv preprint arXiv:2101.05982

Hiraoka, T., Imagawa, T., Hashimoto, T., Onishi, T., and Tsuruoka, Y. (2021) Dropout Q-functions for doubly efficient

reinforcement learning. arXiv preprint arXiv:2110.02034
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DroQ: Performance

I Outperforms SAC, REDQ and DUVN
I No comparison to TQC

Moerland, T. M., Broekens, J., and Jonker, C. M. (2017) Efficient exploration with double uncertain value networks. arXiv

preprint arXiv:1711.10789
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Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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