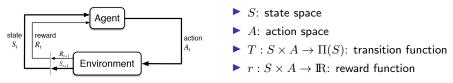
Reinforcement Learning 2. Markov Decision Processes

Olivier Sigaud

Sorbonne Université http://people.isir.upmc.fr/sigaud

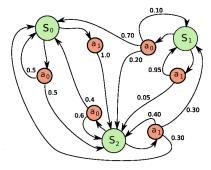
Markov Decision Processes

Markov Decision Processes



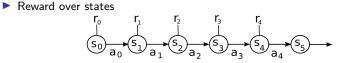
> An MDP describes a problem, not a solution to that problem

Stochastic transition function

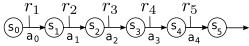


Deterministic problem = special case of stochastic
T(s^t, a^t, s^{t+1}) = p(s'|s, a)

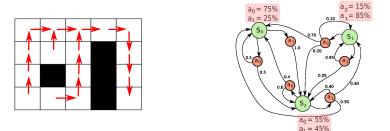
Rewards: over states or action?



Reward over actions in states



Deterministic versus stochastic policy



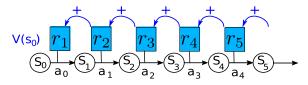
- Goal: find a policy $\pi: S \to A$ maximizing an agregation of rewards on the long run
- Important theorem: for any MDP, there exists a deterministic policy that is optimal

イロト 不同 とうほう 不同 と

6 / 12

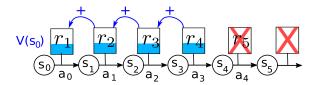
Agregation criterion: mere sum

The computation of value functions assumes the choice of an agregation criterion (discounted, average, etc.)



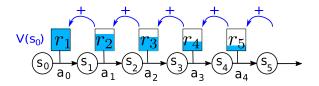
- > The sum over a infinite horizon may be infinite, thus hard to compare
- Mere sum (finite horizon N): $V^{\pi}(S_0) = r_1 + r_2 + \ldots + r_N$

Agregation criterion: average over a window



• Average criterion on a window: $V^{\pi}(S_0) = \frac{r_1 + r_2 + r_3 + r_4}{4} \dots$

Agregation criterion: discounted

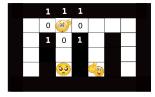


- Discounted criterion: $V^{\pi}(s_{t_0}) = \sum_{t=t_0}^{\infty} \gamma^t r(s_t, \pi(s_t))$
- ▶ $\gamma \in [0,1]$: discount factor
 - ▶ if γ = 0, sensitive only to immediate reward
 - if $\gamma = 1$, future rewards are as important as immediate rewards
- The discounted case is the most used

Markov Property

- An MDP defines s_{t+1} and r_{t+1} as $f(s_t, a_t)$
- Markov property : $p(s_{t+1}|s_t, a_t) = p(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, ...s_0, a_0)$
- ▶ In an MDP, a memory of the past does not provide any useful advantage
- Reactive agents $a_{t+1} = f(s_t)$, without internal states nor memory, can be optimal

Markov property: Limitations



イロト イヨト イヨト イヨト

- Markov property is not verified if:
 - the observation does not contain all useful information to take decisions (POMDPs)
 - or if the next state depends on decisions of several agents (Dec-MDPs, Dec-POMDPs, Markov games)
 - or if transitions depend on time (Non-stationary problems)

Reinforcement Learning Markov Decision Processes

Any question?

Send mail to: Olivier.Sigaud@isir.upmc.fr

(ロ) (四) (三) (三) (三)