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» S: state space

» A: action space

> T:S5x A—II(S): transition function
» r:S5x A— IR: reward function

» An MDP describes a problem, not a solution to that problem
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Stochastic transition function

» Deterministic problem = special case of stochastic
> T(s',at, s"0) = p(s's, a)
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Rewards: over states or action?

» Reward over states
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» Reward over actions in states
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Deterministic versus stochastic policy

a1=45%

» Goal: find a policy 7 : S — A maximizing an agregation of rewards on the
long run

» Important theorem: for any MDP, there exists a deterministic policy that
is optimal
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:
Agregation criterion: mere sum

» The computation of value functions assumes the choice of an agregation
criterion (discounted, average, etc.)
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» The sum over a infinite horizon may be infinite, thus hard to compare
» Mere sum (finite horizon N): V™(So) =r1+r2+...+rn
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Agregation criterion: average over a window
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> Average criterion on a window: V™ (Sp) =
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Agregation criterion: discounted

> Discounted criterion: V7™ (s¢,) = 30,2, 7' (se, m(s¢))
> ~ € [0,1]: discount factor
> if v = 0, sensitive only to immediate reward

» if v =1, future rewards are as important as immediate rewards
» The discounted case is the most used
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Markov Property

» An MDP defines si+1 and ri11 as f(s¢, at)
» Markov property : p(Si+1|st, at) = p(St+1|st, at, St—1,at—1, ...S0, ao)
» In an MDP, a memory of the past does not provide any useful advantage

> Reactive agents a;+1 = f(s¢), without internal states nor memory, can be
optimal
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Markov property: Limitations
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» Markov property is not verified if:
> the observation does not contain all useful information to take decisions
(POMDPs)
» or if the next state depends on decisions of several agents
(Dec-MDPs, Dec-POMDPs, Markov games)
» or if transitions depend on time
(Non-stationary problems)
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Any question?

Send mail to: Olivier.Sigaud@isir.upmc.fr
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