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Introduction: Reminder

The five routes to deep RL
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» Five different ways to come to Deep RL
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Introduction: Reminder

The Policy Search route

¥ function approx.
-> increm. estim.

on-policy
bias-variance

» The favorite route of roboticists
» Central question: difference between PG with baseline and Actor-Critic

Marc P. Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for robotics. Foundations and Trends(®) i
Robotics, 2(1-2):1-142, 2013



Policy search:
general intuitions
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The policy search problem

Example: a (cheap) tennis ball collector

A robot without a ball sensor
Travels on a tennis court based on a parametrized controller

Performance: number of balls collected in a given time
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Just depends on robot trajectories and ball positions
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The policy search problem

Influence of policy parameters

» Controller parameters: proba of turn per time step, travelling speed
» How do the parameters influence the performance?

» Policy search: find the optimal policy parameters
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The policy search problem

Two sources of stochasticity

The position of balls varies The trajectories vary

» From the environment: position of the balls

» From the policy, if it is stochastic

» The performance can vary a lot — need to repeat
» Tuning parameters can be hard
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Policy search:
formalization
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Policy search: formalization

The policy search problem: formalization

» 7, is a robot trajectory
» R(7;) is the corresponding return

» 79 is the parametrized policy of the robot

> We want to optimize J(0) = IE;~, [R(7)], the global utility function
» We tune policy parameters 8, thus the goal is to find

0" = arg;nax J(0) = arg;nax Z P(7|0)R(T) (1)

» where P(7|0) is the probability of trajectory T under policy 7

ISIR

DESSISTEMES

Deisenroth, M. P., Neumann, G., Peters, J., et al. (2013) A survey on policy search for robotics. Foundations and Trends(® i
Robotics, 2(1-2):1-142
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Policy search: formalization

Direct Policy Search is black box optimization

J () is the performance over policy parameters
Choose a 6

>
>
P Generate trajectories 7o
| 4
>

Get the return J(0) of these trajectories
Look for a better 0, repeat

» DPS uses (0, J(60)) pairs and directly looks for 8 with the highest J(0)
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(Truly) Random Search

Jo
o | » Select 8; randomly
w i > Evaluate J(0;)
f W'W ; > If J(8;) is the best so far, keep 6;
» Loop until J(0;) > target
I (4
6

AN 6

» Of course, this is not efficient if the space of 0 is large
> General "blind” algorithm, no assumption on J(0)

» We can do better if J(6) shows some local regularity

Sigaud, O. & Stulp, F. (2019) Policy search in continuous action

iew. Neural N

ks, 113:28-40
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Direct policy search

» Locality assumption: The function is locally smooth, good solutions are
close to each other
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Variation - selection

» Variation - selection: Perform well chosen variations, evaluate them
» Variations generally controlled using a multivariate Gaussian
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Policy search: formalization

Gradient ascent
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Variation‘ - selection Gradiehé‘aécent

» Gradient ascent: Following the gradient from analytical knowledge
> lIssue: in general, the function J(@) is unknown

» How can we apply gradient ascent without knowing the function?
» The answer is the Policy Gradient Theorem
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Policy search: formalization

Any question?

Send mail to: Olivier.Sigaud@upmc.fr



Olivier.Sigaud@upmc.fr
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