Reinforcement Learning 4. Model-free reinforcement Learning

Olivier Sigaud

Sorbonne Université http://people.isir.upmc.fr/sigaud

Action Value Function Approaches

Value function and Action Value function

- ► The value function $V^{\pi} : S \to \mathbb{R}$ records the agregation of reward on the long run for each state (following policy π). It is a vector with one entry per state
- The action value function Q^π : S × A → IR records the agregation of reward on the long run for doing each action in each state (and then following policy π). It is a matrix with one entry per state and per action/

RL algorithms
Action Value Function Approaches

SARSA

- Reminder (TD): $V(s_t) \leftarrow V(s_t) + \alpha[r_{t+1} + \gamma V(s_{t+1}) V(s_t)]$
- ► SARSA: For each observed $(s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1})$: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$
- ▶ Policy: perform exploration (e.g. *e-greedy*)
- One must know the action a_{t+1} , thus constrains exploration
- On-policy method: more complex convergence proof

Singh, S. P., Jaakkola, T., Littman, M. L., & Szepesvari, C. (2000). Convergence Results for Single-Step On-Policy Reinforcement Learning Algorithms. *Machine Learning*, 38(3):287–308.

Action Value Function Approaches

SARSA: the algorithm

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SChoose A from S using policy derived from Q (e.g., ε -greedy) Loop for each step of episode: Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ε -greedy) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$ $S \leftarrow S'; A \leftarrow A';$ until S is terminal

Taken from Sutton & Barto, 2018

Q-LEARNING

For each observed $(s_t, a_t, r_{t+1}, s_{t+1})$:

 $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma \max_{a \in A} Q(s_{t+1}, a) - Q(s_t, a_t)]$

- $\max_{a \in A} Q(s_{t+1}, a)$ instead of $Q(s_{t+1}, a_{t+1})$
- Off-policy method: no more need to know a_{t+1}
- Policy: perform exploration (e.g. *e-greedy*)
- Convergence proven given infinite exploration

Watkins, C. J. C. H. (1989). Learning with Delayed Rewards. PhD thesis, Psychology Department, University of Cambridge, England.

Watkins, C. J. C. H. & Dayan, P. (1992) Q-learning. Machine Learning, 8:279-292

Action Value Function Approaches

$\operatorname{Q-LEARNING}$: the algorithm

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

 $\begin{array}{l} \mbox{Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ \\ \mbox{Initialize $Q(s, a)$, for all $s \in \mathbb{S}^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ \\ \mbox{Loop for each sepsode:} \\ \mbox{Initialize S} \\ \mbox{Loop for each step of episode:} \\ \mbox{Choose A from S using policy derived from Q (e.g., ε-greedy) \\ \mbox{Take action A, observe R, S' \\ $Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma \max_a Q(S', a) - Q(S, A)]$ \\ $S \leftarrow S'$ \\ \mbox{until S is terminal} \end{array}$

Taken from Sutton & Barto, 2018

Action Value Function Approaches

Difference between Q-LEARNING and SARSA

- Consider an agent taking the two pink actions
- \blacktriangleright With Q-LEARNING, the propagated value ? is $\gamma \, {\rm argmax}_a \, Q(s_{t+1},a),$ thus $0.9 \times 0.9 = 0.81$
- With SARSA, it is $\gamma Q(s_{t+1}, a_{t+1})$, thus $0.9 \times -0.2 = -0.18$

-Action Value Function Approaches

$\operatorname{Q-LEARNING}$ in practice

◆ 0.0 ▶	♦ 0.0 ♦	♦ 0.0 ►	4 0.0►	◆ 0.0 ▶
◆ 0.0 ▶	◆ 0.0 ↓	◆ 0.0►		◆ 0.0►
◆ 0.0 ▶		♦ 0.0 ♦		40.0►
40.0►	◆ 0.0 ▶	↓		0.0

- Build a states×actions table (Q-Table, eventually incremental)
- Initialise it (randomly or with 0 is not a good choice)
- Apply update equation after each action
- Problem: it is (very) slow

Actor-critic: Naive design

- Discrete states and actions, stochastic policy
- An update in the critic generates a local update in the actor
- ► Critic: compute δ and update V(s) with $V_{k+1}(s) \leftarrow V_k(s) + \alpha_k \delta_k$
- Actor: $P_{k+1}^{\pi}(a|s) \leftarrow P_{k}^{\pi}(a|s) + \alpha_{k} \prime \delta_{k}$
- NB: no need for a max over actions
- NB2: one must know how to "draw" an action from a probabilistic policy (not straightforward for continuous actions)

Williams, R. J. and Baird, L. (1990) A mathematical analysis of actor-critic architectures for learning optimal controls through incremental dynamic programming. In Proceedings of the Sixth Yale Workshop on Adaptive and Learning Systems, pages 96–101

Dynamic Programming and Actor-Critic

- In both PI and AC, the architecture contains a representation of the value function (the critic) and the policy (the actor)
- ▶ In PI, the MDP (T and r) is known
- PI alternates two stages:
 - 1. Policy evaluation: update (V(s)) or (Q(s, a)) given the current policy
 - 2. Policy improvement: follow the value gradient
- ln AC, T and r are unknown and not represented (model-free)
- Information from the environment generates updates in the critic, then in the actor

イロン イロン イヨン イヨン

From Q(s, a) to Actor-Critic

state / action	a_0	a_1	a_2	a_3	state	chosen action
e_0	0.66	0.88*	0.81	0.73	e_0	a_1
e_1	0.73	0.63	0.9*	0.43	e_1	a_2
e_2	0.73	0.9	0.95*	0.73	e_2	a_2
e_3	0.81	0.9	1.0*	0.81	e_3	a_2
e_4	0.81	1.0*	0.81	0.9	e_4	a_1
e_5	0.9	1.0*	0.0	0.9	e_5	a_1

• Given a Q - Table, one must determine the max at each step

- This becomes expensive if there are numerous actions
- Store the best value for each state
- Update the max by just comparing the changed value and the max
- No more maximum over actions (only in one case)
- Storing the max is equivalent to storing the policy
- Update the policy as a function of value updates

Any question?

Send mail to: Olivier.Sigaud@isir.upmc.fr

・ロト ・回 ト ・ヨト ・ヨト

Singh, S. P., Jaakkola, T., Littman, M. L., and Szepesvári, C. (2000).

Convergence results for single-step on-policy reinforcement-learning algorithms. Machine learning, 38(3):287–308.

Watkins, C. J. C. H. (1989).

Learning with Delayed Rewards. PhD thesis, Psychology Department, University of Cambridge, England.

Watkins, C. J. C. H. and Dayan, P. (1992).

Q-learning. Machine Learning, 8:279–292.

Williams, R. J. and Baird, L. (1990).

A mathematical analysis of actor-critic architectures for learning optimal controls through incremental dynamic programming. In Proceedings of the Sixth Yale Workshop on Adaptive and Learning Systems, pages 96–101. Citeseer.

