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Value function and Action Value function

» The value function V™ : S — IR records the agregation of reward on the

long run for each state (following policy 7). It is a vector with one entry
per state

» The action value function Q™ : S x A — IR records the agregation of
reward on the long run for doing each action in each state (and then
following policy 7). It is a matrix with one entry per state and per actio
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SARSA

» Reminder (TD):V (s:) + V(s¢) + afrip1r + 7V (se41) — V(se)]
> SARSA: For each observed (s¢, at, Te41, St4+1, Gr41):

Q(st,a1) < Q(st,a1) + alrepr + YQ(Se41, argr) — Qs ar)]
> Policy: perform exploration (e.g. e-greedy)
» One must know the action a1, thus constrains exploration
» On-policy method: more complex convergence proof

Singh, S. P., Jaakkola, T., Littman, M. L., & Szepesvari, C. (2000). Convergence Results for Single-Step On-Policy Reinforcement
Learning Algorithms. Machine Learning, 38(3):287-308.
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SARSA: the algorithm

a (on-policy TD control) for estimating Q ~ ¢,

Algorithm parameters: step size o € (0, 1], small £ > 0
Initialize Q(s,a), for all s € 8*,a € A(s), arbitrarily except that Q(terminal, -) = 0
Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q5. 4) - Q(S, 4) + o[ R +7Q(S". 4') — Q(S. 4)]
S« S A+ AL
until S is terminal

» Taken from Sutton & Barto, 2018
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Q-LEARNING

» For each observed (st,a¢, re+1, St+1):
Q(stae) = Q(st, ae) + afreps +ymax Q(ser, a) — Qse, ar)]
maxqeca Q(St+1,a) instead of Q(s¢41,at+1)

Off-policy method: no more need to know a1

Policy: perform exploration (e.g. e-greedy)

vvyyvyy

Convergence proven given infinite exploration

Watkins, C. J. C. H. (1989). Learning with Delayed Rewards. PhD thesis, Psychology Department, University of Cambridge,

England.

Watkins, C. J. C. H. & Dayan, P. (1992) Q-learning. Machine Learning, 8:279-292
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Q-LEARNING: the algorithm

Q-learning (off-policy TD control) for estimating 7 ~ m,

Algorithm parameters: step size a € (0,1], small ¢ > 0
Initialize Q(s, a), for all s € $T,a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S, 4) + Q(S, A) + a[R + ymax, Q(5,a) — Q(S, A)]
S« 9

until S is terminal

» Taken from Sutton & Barto, 2018
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Difference between Q-LEARNING and SARSA
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» Consider an agent taking the two pink actions

> With Q-LEARNING, the propagated value ? is v argmax, Q(s¢+1,a), thus
0.9 x0.9=0.81

> With SARSA, it is YQ(S¢+1,at+1), thus 0.9 x —0.2 = —0.18
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Q-LEARNING in practice
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> Build a statesxactions table (Q-Table, eventually incremental)
» Initialise it (randomly or with O is not a good choice)
» Apply update equation after each action

» Problem: it is (very) slow
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Actor-critic: Naive design

vV VvYyVvYyyypy

sensations
Environment Agent
critic | | actor
reward 5 (S
A actions

Discrete states and actions, stochastic policy

An update in the critic generates a local update in the actor
Critic: compute ¢ and update V' (s) with Vi11(s) < Vi(s) + ardx
Actor: P[T | (als) « P (als) + /0y,

NB: no need for a max over actions

NB2: one must know how to “draw” an action from a probabilistic policy (not
straightforward for continuous actions)

ISIR

hed
q e

Williams, R. J. and Baird, L. (1990) A mathematical analysis of actor-critic architectures for learning optimal controls throug|

incremental dynamic programming. In Proceedings of the Sixth Yale Workshop on Adaptive and Learning Systems, pages 96—1\
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Dynamic Programming and Actor-Critic

Policy Iteration Actor-Critic

(/ Critic )/\//;
= (
/ ~—"

» In both Pl and AC, the architecture contains a representation of the value
function (the critic) and the policy (the actor)

» In PI, the MDP (T and r) is known

> Pl alternates two stages:

1. Policy evaluation: update (V(s)) or (Q(s,a)) given the current policy
2. Policy improvement: follow the value gradient

» In AC, T and r are unknown and not represented (model-free)

» Information from the environment generates updates in the critic, then in the
actor
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From Q(s, a) to Actor-Critic

state / action ao a1 as as state  chosen action
€o 0.66 | 0.88* | 0.81 | 0.73 €o a1
e1 0.73 | 0.63 0.9% | 043 el az
€2 0.73 0.9 0.95*% | 0.73 e az
es 0.81 0.9 1.0* | 0.81 es3 az
n 0.81 | 1.0* 0.81 0.9 e4 a1
es 0.9 1.0* 0.0 0.9 es a1
» Given a Q — Table, one must determine the max at each step
» This becomes expensive if there are numerous actions
» Store the best value for each state
» Update the max by just comparing the changed value and the max
» No more maximum over actions (only in one case)
» Storing the max is equivalent to storing the policy
» Update the policy as a function of value updates
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Any question?

Send mail to: Olivier.Sigaud@isir.upmc.fr



Olivier.Sigaud@isir.upmc.fr
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