Soft Actor Critic

Olivier Sigaud with the help of Thomas Pierrot

Sorbonne Université http://people.isir.upmc.fr/sigaud

SAC

Soft Actor Critic: The best of two worlds

- TRPO and PPO: π_{θ} stochastic, on-policy, low sample efficiency, stable
- **DDPG** and TD3: π_{θ} deterministic, replay buffer, better sample efficiency, unstable
- SAC: "Soft" means "entropy regularized", π_{θ} stochastic, replay buffer
- Adds entropy regularization to favor exploration (follow-up of several papers)
- Attempt to be stable and sample efficient
- Three successive versions

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A. Abbeel, P. et al. (2018) Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018) Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290

Haarnoja, T. Tang, H., Abbeel, P. and Levine, S. (2017) Reinforcement learning with deep energy-based policies. arXiv preprint arXiv:1702.08165

Soft Actor-Critic

 $_{\rm SAC}$ learns a stochastic policy π^* maximizing both rewards and entropy:

$$\pi^* = \arg \max_{\pi_{\theta}} \sum_{t} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi_{\theta}}} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi_{\theta}(.|\mathbf{s}_t)) \right]$$

- ► The entropy is defined as: $\mathcal{H}(\pi_{\theta}(.|\mathbf{s}_t)) = \mathbb{E}_{\mathbf{a}_t \sim \pi_{\theta}(.|\mathbf{s}_t)} \left[-\log \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t) \right]$
- SAC changes the traditional MDP objective
- Thus, it converges toward different solutions
- Consequently, it introduces a new value function, the soft value function
- ▶ As usual, we consider a policy π_{θ} and a soft action-value function $\hat{Q}^{\pi_{\theta}}_{\phi}$

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. (2016) Asynchronous methods for deep reinforcement learning. arXiv preprint arXiv:1602.01783

イロト イヨト イヨト イヨト

Soft policy evaluation

1

- $\blacktriangleright \text{ Usually, we define } \hat{V}_{\phi}^{\pi_{\theta}}(\mathbf{s}_{t}) = \mathbb{I}\!\!\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\theta}(.|\mathbf{s}_{t})} \left[\hat{Q}_{\phi}^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$
- In soft updates, we rather use:

$$\hat{V}_{\phi}^{\pi_{\theta}}(\mathbf{s}_{t}) = \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\theta}(.|\mathbf{s}_{t})} \left[\hat{Q}_{\phi}^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) + \alpha \mathcal{H}(\pi_{\theta}(.|\mathbf{s}_{t})) \right] \\ = \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\theta}(.|\mathbf{s}_{t})} \left[\hat{Q}_{\phi}^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] + \alpha \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\theta}(.|\mathbf{s}_{t})} \left[-\log \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t}) \right] \\ = \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\theta}(.|\mathbf{s}_{t})} \left[\hat{Q}_{\phi}^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) - \alpha \log \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t}) \right]$$

Critic updates

We define a standard Bellman operator:

$$\mathcal{T}^{\pi}\hat{Q}^{\pi_{\theta}}_{\phi}(\mathbf{s}_{t},\mathbf{a}_{t}) = r(\mathbf{s}_{t},\mathbf{a}_{t}) + \gamma V^{\pi_{\theta}}_{\phi}(\mathbf{s}_{t+1})$$
$$= r(\mathbf{s}_{t},\mathbf{a}_{t}) + \gamma \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\theta}(.|\mathbf{s}_{t+1})} \left[\hat{Q}^{\pi_{\theta}}_{\phi}(\mathbf{s}_{t+1},\mathbf{a}_{t}) - \alpha \log \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t+1})\right]$$

Critic parameters can be learned by minimizing the loss associated to $J_Q(\boldsymbol{\theta})$:

$$loss_Q(\boldsymbol{\phi}) = \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}) \sim \mathcal{D}} \left[\left(r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \hat{V}_{\boldsymbol{\phi}}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_{t+1}) - \hat{Q}_{\boldsymbol{\phi}}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_t, \mathbf{a}_t) \right)^2 \right]$$

DES SYSTÈME INTELLIGENTS ET DE ROBOTI

≣ ∽ Q 6 / 14

イロン 不良 とくほど 不良 とう

where
$$V_{\phi}^{\pi\theta}(\mathbf{s}_{t+1}) = \mathbb{E}_{\mathbf{a} \sim \pi_{\theta}(.|\mathbf{s}_{t+1})} \left[\hat{Q}_{\phi}^{\pi\theta}(\mathbf{s}_{t+1}, \mathbf{a}) - \alpha \log \pi_{\theta}(\mathbf{a}|\mathbf{s}_{t+1}) \right]$$

Similar to DDPG update, but with entropy

Actor updates

- Update policy such as to become greedy w.r.t to the soft Q-value
- Choice: update the policy towards the exponential of the soft Q-value

$$J_{\pi}(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}}[KL(\pi_{\boldsymbol{\theta}}(.|\mathbf{s}_{t}))|| \frac{\exp(\frac{1}{\alpha}\hat{Q}_{\boldsymbol{\phi}}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_{t},.))}{Z_{\boldsymbol{\theta}}(\mathbf{s}_{t})}].$$

- $Z_{\theta}(\mathbf{s}_t)$ is just a normalizing term to have a distribution
- \blacktriangleright sac does not minimize directly this expression but a surrogate one that has the same gradient w.r.t θ

The policy parameters can be learned by minimizing:

$$J_{\pi}(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}(.|\mathbf{s}_{t})} \left[\alpha \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t}|\mathbf{s}_{t}) - \hat{Q}_{\boldsymbol{\phi}}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_{t},\mathbf{a}_{t}) \right] \right]$$

Similar to DDPG update, but with entropy

・ロト ・回ト ・ヨト ・ヨト

Continuous vs discrete actions setting

CriticActorCriticActor $\hat{Q}_g^{*}(s,a_2), \hat{Q}_g^{*}(s,a_2), \hat{Q}_g^{*}(s,a_3)$ $p(a_1|s), p(a_2|s), p(a_3|s)$ $\hat{V}_g^{*}(s), \hat{Q}_g^{*}(s,a_3)$ $\hat{V}_g^{*}(s), \hat{Q}_g^{*}(s,a_3)$ $\hat{Q}_g^{*}(s,a_3), \hat{Q}_g^{*}(s,a_3), \hat{Q}_g^{*}(s,a_3)$ $\hat{V}_g^{*}(s), \hat{Q}_g^{*}(s,a_3), \hat{Q}_g^{*}(s,a_3)$ $\hat{V}_g^{*}(s), \hat{Q}_g^{*}(s,a_3)$ $\hat{Q}_g^{*}(s,a_3), \hat{Q}_g^{*}(s,a_3), \hat{Q}$

SAC works in both the discrete action and the continuous action setting

Discrete action setting:

- The critic takes a state and returns a Q-value per action
- The actor takes a state and returns probabilities over actions

Continuous action setting:

- The critic takes a state and an action vector and returns a scalar Q-value
- Need to choose a distribution function for the actor
- SAC uses a squashed Gaussian: $\mathbf{a} = \tanh(n)$ where $n \sim \mathcal{N}(\mu_{\phi}, \sigma_{\phi})$

Computing the actor loss

- ► To compute $J_{\pi}(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}(.|\mathbf{s}_{t})} \left[\alpha \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t}|\mathbf{s}_{t}) - \hat{Q}_{\boldsymbol{\phi}}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_{t},\mathbf{a}_{t}) \right] \right]$
- ▶ SAC needs to estimate an expectation over actions sampled from the actor,
- ► That is $\mathbb{E}_{\mathbf{a}_t \sim \pi_{\theta}(.|s)} [F(\mathbf{s}_t, \mathbf{a}_t)]$ where F is a scalar function of the action.
- ▶ In the discrete action setting, $\pi_{\theta}(.|\mathbf{s}_t)$ is a vector of probabilities

$$\blacktriangleright \mathbb{E}_{\mathbf{a}_t \sim \pi_{\boldsymbol{\theta}}(.|\mathbf{s}_t)} \left[F(\mathbf{s}_t, \mathbf{a}_t) \right] = \pi_{\boldsymbol{\theta}}(.|\mathbf{s}_t)^T F(\mathbf{s}_t, .)$$

- No specific difficulty
- In the continuous action setting:
 - The actor returns μ_{θ} and σ_{θ}
 - Re-parameterization trick: $\mathbf{a}_t = \tanh(\mu_{\theta} + \epsilon.\sigma_{\theta})$ where $\epsilon \sim \mathcal{N}(0, 1)$
 - $\blacktriangleright \text{ Thus, } \mathbb{E}_{\mathbf{a}_t \sim \pi_{\boldsymbol{\theta}}(.|\mathbf{s}_t)} \left[F(\mathbf{s}_t, \mathbf{a}_t) \right] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0,1)} \left[F(\mathbf{s}_t, \tanh(\mu_{\boldsymbol{\theta}} + \epsilon \sigma_{\boldsymbol{\theta}})) \right]$
 - This trick reduces the variance of the expectation estimate (not always!)
 - Can still backprop from samples w.r.t θ

Reparameterization trick

Critic update improvements (from TD3)

- As in TD3, SAC uses two critics $\hat{Q}_{\phi_1}^{\pi_{\theta}}$ and $\hat{Q}_{\phi_2}^{\pi_{\theta}}$
- The TD-target becomes:

$$y_t = r + \gamma \mathbb{E}_{\mathbf{a}_{t+1} \sim \pi_{\boldsymbol{\theta}}(.|\mathbf{s}_{t+1})} \left[\min_{i=1,2} \hat{Q}_{\phi_i}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) - \alpha \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_{t+1}|\mathbf{s}_{t+1}) \right]$$

And the losses:

$$\begin{cases} J_Q(\boldsymbol{\theta}) = \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}) \sim \mathcal{D}} \left[\left(\hat{Q}_{\boldsymbol{\phi}_1}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_t, \mathbf{a}_t) - y_t \right)^2 + \left(\hat{Q}_{\boldsymbol{\phi}_2}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_t, \mathbf{a}_t) - y_t \right)^2 \right] \\ J_{\pi}(\boldsymbol{\theta}) = \mathbb{E}_{s \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a}_t \sim \pi_{\boldsymbol{\theta}}(\cdot|\mathbf{s}_t)} \left[\alpha \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t|\mathbf{s}_t) - \min_{i=1,2} \hat{Q}_{\boldsymbol{\phi}_i}^{\pi_{\boldsymbol{\theta}}}(\mathbf{s}_t, \mathbf{a}_t) \right] \right] \end{cases}$$

Since the actor and critic updates are those of DDPG but with entropy, if we set $\alpha = 0$ and take a deterministic policy, we exactly get TD3

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint arXiv:1802.09477

11 / 14

イロト イヨト イヨト イヨト

Automatic Entropy Adjustment

- \blacktriangleright The temperature α needs to be tuned for each task
- Finding a good α is non trivial
- Instead of tuning α , tune a lower bound \mathcal{H}_0 for the policy entropy
- And change the optimization problem into a constrained one

$$\begin{cases} \pi^* = \operatorname*{argmax}_{\pi} \sum_{t} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi_{\boldsymbol{\theta}}}} \left[r(\mathbf{s}_t, \mathbf{a}_t) \right] \\ \text{s.t. } \forall t \ \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi_{\boldsymbol{\theta}}}} \left[-\log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) \right] \geq \mathcal{H}_{0}, \end{cases}$$

Use heuristic to compute H₀ from the action space size

 $\boldsymbol{\alpha}$ can be learned to satisfy this constraint by minimizing:

$$J(\alpha) = \mathbb{E}_{\mathbf{s}_t \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a}_t \sim \pi_{\boldsymbol{\theta}}(.|\mathbf{s}_t)} \left[-\alpha \log \pi_{\boldsymbol{\theta}}(\mathbf{a}_t | \mathbf{s}_t) - \alpha \mathcal{H}_0 \right] \right]$$

Practical algorithm

- ▶ Initialize neural networks π_{θ} and $\hat{Q}^{\pi_{\theta}}_{\phi}$ weights
- ▶ Play k steps in the environment by sampling actions with π_{θ}
- Store the collected transitions in a replay buffer
- Sample k batches of transitions in the replay buffer
- Update the temperature α , the actor and the critic using SGD
- Repeat this cycle until convergence

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

Fujimoto, S., van Hoof, H., and Meger, D. (2018).

Addressing function approximation error in actor-critic methods.

In Dy, J. G. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 1582–1591, PMLR.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017).

Reinforcement learning with deep energy-based policies. In International conference on machine learning, pages 1352–1361. PMLR.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018a).

Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor.

In Dy, J. G. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 1856–1865. PMLR.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., et al. (2018b).

Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and Kavukcuoglu, K. (2016).

Asynchronous methods for deep reinforcement learning.

In Balcan, M. and Weinberger, K. Q., editors, Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages 1928–1937. JMLR.org.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2020).

Monte carlo gradient estimation in machine learning. J. Mach. Learn. Res., 21(132):1–62.

