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Soft Actor Critic: The best of two worlds

I trpo and ppo: πθ stochastic, on-policy, low sample efficiency, stable
I ddpg and td3: πθ deterministic, replay buffer, better sample efficiency, unstable
I SAC: “Soft” means “entropy regularized”, πθ stochastic, replay buffer
I Adds entropy regularization to favor exploration (follow-up of several papers)
I Attempt to be stable and sample efficient
I Three successive versions

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A. Abbeel, P. et al. (2018) Soft

actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018) Soft actor-critic: Off-policy maximum entropy deep reinforcement

learning with a stochastic actor. arXiv preprint arXiv:1801.01290

Haarnoja, T. Tang, H., Abbeel, P. and Levine, S. (2017) Reinforcement learning with deep energy-based policies. arXiv preprint

arXiv:1702.08165
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Soft Actor-Critic

sac learns a stochastic policy π∗ maximizing both rewards and entropy:

π∗ = argmax
πθ

∑
t

IE(st,at)∼ρπθ
[r(st,at) + αH(πθ(.|st))]

I The entropy is defined as: H(πθ(.|st)) = IEat∼πθ(.|st) [− log πθ(at|st)]
I sac changes the traditional MDP objective

I Thus, it converges toward different solutions

I Consequently, it introduces a new value function, the soft value function

I As usual, we consider a policy πθ and a soft action-value function Q̂πθ
φ

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and

Koray Kavukcuoglu. (2016) Asynchronous methods for deep reinforcement learning. arXiv preprint arXiv:1602.01783
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Soft policy evaluation

I Usually, we define V̂ πθ
φ (st) = IEat∼πθ(.|st)

[
Q̂
πθ
φ (st,at)

]
I In soft updates, we rather use:

V̂
πθ
φ (st) = IEat∼πθ(.|st)

[
Q̂
πθ
φ (st,at) + αH(πθ(.|st))

]
= IEat∼πθ(.|st)

[
Q̂
πθ
φ (st,at)

]
+ αIEat∼πθ(.|st) [− log πθ(at|st)]

= IEat∼πθ(.|st)

[
Q̂
πθ
φ (st,at)− α log πθ(at|st)

]
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Critic updates

I We define a standard Bellman operator:

T πQ̂πθ
φ (st,at) = r(st,at) + γV

πθ
φ (st+1)

= r(st,at) + γIEat∼πθ(.|st+1)

[
Q̂
πθ
φ (st+1,at)− α log πθ(at|st+1)

]

Critic parameters can be learned by minimizing the loss associated to
JQ(θ):

lossQ(φ) = IE(st,at,st+1)∼D

[(
r(st,at) + γV̂

πθ
φ (st+1)− Q̂πθ

φ (st,at)
)2
]

where V πθ
φ (st+1) = IEa∼πθ(.|st+1)

[
Q̂
πθ
φ (st+1,a)− α log πθ(a|st+1)

]
I Similar to ddpg update, but with entropy
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Actor updates

I Update policy such as to become greedy w.r.t to the soft Q-value

I Choice: update the policy towards the exponential of the soft Q-value

Jπ(θ) = IEst∼D[KL(πθ(.|st))||
exp( 1

α
Q̂
πθ
φ (st, .))

Zθ(st)
].

I Zθ(st) is just a normalizing term to have a distribution

I sac does not minimize directly this expression but a surrogate one that
has the same gradient w.r.t θ

The policy parameters can be learned by minimizing:

Jπ(θ) = IEst∼D

[
IEat∼πθ(.|st)

[
α log πθ(at|st)− Q̂πθ

φ (st,at)
]]

I Similar to ddpg update, but with entropy
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Continuous vs discrete actions setting

I sac works in both the discrete action and the continuous action setting

I Discrete action setting:

I The critic takes a state and returns a Q-value per action
I The actor takes a state and returns probabilities over actions

I Continuous action setting:

I The critic takes a state and an action vector and returns a scalar Q-value
I Need to choose a distribution function for the actor
I sac uses a squashed Gaussian: a = tanh(n) where n ∼ N (µφ, σφ)
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Computing the actor loss

I To compute

Jπ(θ) = IEst∼D

[
IEat∼πθ(.|st)

[
α log πθ(at|st)− Q̂πθ

φ (st,at)
]]

I sac needs to estimate an expectation over actions sampled from the actor,

I That is IEat∼πθ(.|s) [F (st,at)] where F is a scalar function of the action.

I In the discrete action setting, πθ(.|st) is a vector of probabilities
I IEat∼πθ(.|st) [F (st,at)] = πθ(.|st)TF (st, .)
I No specific difficulty

I In the continuous action setting:
I The actor returns µθ and σθ
I Re-parameterization trick: at = tanh(µθ + ε.σθ) where ε ∼ N (0, 1)
I Thus, IEat∼πθ(.|st) [F (st,at)] = IEε∼N (0,1) [F (st, tanh(µθ + εσθ))]
I This trick reduces the variance of the expectation estimate (not always!)
I Can still backprop from samples w.r.t θ

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A. (2020) Monte carlo gradient estimation in machine learning. J. Mach.

Learn. Res., 21(132):1–62
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Reparameterization trick

I In SAC, the reparameterization trick is used to reduce the variance
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Critic update improvements (from td3)

I As in td3, sac uses two critics Q̂πθ
φ1

and Q̂πθ
φ2

I The TD-target becomes:

yt = r + γIEat+1∼πθ(.|st+1)

[
min
i=1,2

Q̂
πθ

φ̄i
(st+1,at+1)− α log πθ(at+1|st+1)

]
And the losses:

 JQ(θ) = IE(st,at,st+1)∼D

[(
Q̂
πθ
φ1

(st,at)− yt
)2

+
(
Q̂
πθ
φ2

(st,at)− yt
)2
]

Jπ(θ) = IEs∼D
[
IEat∼πθ(.|st)

[
α log πθ(at|st)−mini=1,2 Q̂

πθ

φ̄i
(st,at)

]]
I Since the actor and critic updates are those of ddpg but with entropy, if

we set α = 0 and take a deterministic policy, we exactly get td3

Fujimoto, S., van Hoof, H., & Meger, D. (2018) Addressing function approximation error in actor-critic methods. arXiv preprint

arXiv:1802.09477
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Automatic Entropy Adjustment

I The temperature α needs to be tuned for each task

I Finding a good α is non trivial

I Instead of tuning α, tune a lower bound H0 for the policy entropy

I And change the optimization problem into a constrained one

{
π∗ = argmax

π

∑
t

IE(st,at)∼ρπθ
[r(st,at)]

s.t. ∀t IE(st,at)∼ρπθ
[− log πθ(at|st)] ≥ H0,

I Use heuristic to compute H0 from the action space size

α can be learned to satisfy this constraint by minimizing:

J(α) = IEst∼D
[
IEat∼πθ(.|st) [−α log πθ(at|st)− αH0]

]
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Practical algorithm

I Initialize neural networks πθ and Q̂πθ
φ weights

I Play k steps in the environment by sampling actions with πθ

I Store the collected transitions in a replay buffer

I Sample k batches of transitions in the replay buffer

I Update the temperature α, the actor and the critic using SGD

I Repeat this cycle until convergence
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Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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