e
TRPO and ACKTR

TRPO and ACKTR

Olivier Sigaud

Sorbonne Université
http://people.isir.upmc.fr/sigaud




e
TRPO and ACKTR

LTrPO

TRPO




TRPO and ACKTR
LTrPO

Outline

» More PG with baselines: TRPO and ACKTR
» Three aspects distinguish TRPO:
» Surrogate return objective
» Natural policy gradient
» Conjugate gradient approach
» Differences in ACKTR:
> Approximate second order gradient descent (Hessian)
» Using Kronecker Factored Approximated Curvature

» Then PPO (a quick overview of two versions)
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Surrogate return objective
» The standard policy gradient algorithm for stochastic policies is:

VoJ(6) = TE[Vglogma (acls:) A%

> This gradient is obtained from differentiating
LOSSPG (0) = lEt [|0g7'r9 (at|st)A§’9]
> But we obtain the same gradient from differentiating
Loss'S(0) = Et[iﬂe(at‘st) A;"]
Toold(at|st)
where Tg,14 is the policy at the previous iteration

> Because Vpglogf(0)oold = %O)llf)““ = Ve(%)leozd

» Another view based on importance sampling

» See John Schulmann’s Deep RL bootcamp lecture #5
https://www.youtube.com/watch?v=xvRrgxcpaHY (8")

@ Schulman, J., Levine, S., Moritz, P., Jordan, M. I, & Abbeel, P. (2015) Trust Region Policy Optimization. CoRR, abs/1502.0547;

4/16


https://www.youtube.com/watch?v=xvRrgxcpaHY

e
TRPO and ACKTR

L-TrRPO

The policy gradient is on-policy

» The policy gradient calculation assumes that the training trajectories are
obtained from the policy we are optimizing:

> Reminder: we want to find argmaxg > P(7,8)v(7)
> We use

H
P, 0samp) = [ [ p(stilst”, at”).-m0,0,0, (af” |1

t=1
> Here, by definition, 7e,,,,, (a$”s{") is the policy which generated the
trajectories
» Then we take the gradient and get the policy gradient formula

» If we want to optimize another policy weoth”(af)\sti)), the derivation is
wrong
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Importance sampling

» How can we estimate an expectation of a function over a distribution 61 if we
know it from another distribution 627

By g, [f(2)] = P(]61) f(z)

_ P(l61) , -
= 71,(1,‘02)1”( 162) f ()

P(I‘@l)
= 7]]3‘%N
P 0l
P(201)
> P10)

is the importance sampling term

» In policy gradient methods, the distributions of interest are Tamp and mg

other "’
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Importance sampling: application to TRPO

» We sampled data from 7y

samp

We want to optimize another policy 7g

other’

> We can rewrite

(4) ()
ONRORNO) (1)1 (5)y Tsamp (@t I8¢ ")
( ® oothe'r) - Hp(3t+1 St 7,0y )'ﬂ-eothe‘r‘ (at |3t ) p(ay”sgi))

ﬂ—esamp
» Or
H (1)) (9
i i i i)\ 7O, ET(G |3 ) i i
P(T( )7eother) = HP(Sg.zﬂst )70‘1(} ))'M—MJTBSQWP (ay )| i)
t=1 Wesamp(at [s:”)

(ag” 15"

e
» The term —ether L __ 1
(a5

TOsamp

» In TRPO, Tg

is the importance sampling term

sample = 71-eold’ 7.reothev‘ =Te

» We apply the same derivation as for the policy gradient...
> We get Loss'5(0) = Et[mﬁg"]

Toold(atlst)
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Trust region

L6
AL
loss function
0
G 6.\ first order -
approximation
» The gradient of a function is only accurate close to the point where it is
calculated
> VgJ(0) is only accurate close to the current policy g
>

Thus, when updating, mg must not move too far away from a “trust region”
around mgo1q

Kakade, S. & Langford, J. (2002) Approximately optimal approximate reinforcement learning. In 2

N
N

ICML, volume 2, pages 267~
5 = =
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Trust Region Policy Optimization

» Theory: monotonous improvement towards the optimal policy
(Assumptions do not hold in practice)

» To ensure small steps, TRPO uses a natural gradient update instead of
standard gradient

» Minimize Kullback-Leibler divergence to previous policy

e (at |St) AT0old
Toold(at|st)

subject to B, [K L(meora(.|s)| o (ac]s:))] < e

Il’lg),X ]Et [ (St, at)]

» In TRPO, optimization performed using a conjugate gradient method to
avoid approximating the Fisher Information matrix

Ia Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2015) Trust Region Policy Optimization. CoRR, abs/1502.054,
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Natural Policy Gradient

KL(py,p2) = 0.78 KL(p1,p2) = 1.65 KL(p1,p2) = 3.02

P2

» One way to constrain two stochastic policies to stay close is constraining their
KL divergence

» The KL divergence is smaller when the variance is larger

» Under fixed KL constraint, it is easier to move the mean further away when the
variance is large

» Thus the mean policy converges first, then the variance is reduced

v

Ensures a large enough amount of exploration noise

» Other properties presented in the Pierrot et al. (2018) paper

Sham M. Kakade. A natural policy gradient. In Advances in neural information processing systems, pp. 1531-1538, 2002

&) &

Pierrot, T., Perrin, N., & Sigaud, O. (2018) First-order and second-order variants of the gradient descent: a unified framework\
arXiv preprint arXiv:1810.08102
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Advantage estimation

> To get A%, an empirical estimate of V™ (s) is needed

» TRPO uses a MC estimate approach through regression, but constrains it
(as for the policy):

N
. V7r9 " _Vﬂ'e " 2
mdgnnzzoll " (sn) (sa)ll

Vﬂe S — e s 2
subject to — Z I (sn) 24’ ld( n)ll <e

20

» Equivalent to a mean KL divergence constraint between Vge and ngtd

» Very similar to target critic in DQN, DDPG... Can be implemented in the
same way
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Properties

Moves slowly away from current policy
Key: use of line search to deal with the gradient step size

More stable than DDPG, performs well in practice, but less sample efficient

vvyyy

Conjugate gradient approach not provided in standard tensor gradient
librairies, thus not much used

v

Greater impact of PPO

v

Related work: NAC, REPS

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71 (7-9):1180-1190, 2008

Jan Peters, Katharina Miilling, and Yasemin Altun. Relative entropy policy search. In AAAI, pp. 1607-1612. Atlanta, 2010
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First order versus second order derivative

L(0)

L(0)
loss function
loss function

second order
approximation

1002

G 01\ first order
approximation

» In first order methods, need to define a step size

» Second order methods provide a more accurate approximation

» They also provide a true minimum, when the Hessian matrix is symmetric
positive-definite (SPD)

In both cases, the derivative is very local

v

v

The trust region constraint applies too
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» K-FAC: Kronecker Factored Approximated Curvature: efficient estimate of
the gradient

v

Using block diagonal estimations of the Hessian matrix, to do better than
first order

ACKTR: TRPO with K-FAC natural gradient calculation
But closer to actor-critic updates (see PPO)
The per-update cost of ACKTR is only 10% to 25% higher than SGD

Improves sample efficiency

vVvyyvyVvyy

Not much excitement: less robust gradient approximation?

Ia Yuhuai Wu, Elman Mansimov, Shun Liao, Roger Grosse, and Jimmy Ba (2017) Scalable trust-region method for deep

reinforcement learning using Kronecker-factored approximation. arXiv preprint arXiv:1708.05144
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Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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