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Goal-Conditioned Reinforcement Learning

Outline

I Four perspectives:

I Perspective 1: the skill learning (or unsupervised RL) perspective
I Perspective 2: the setter-solver perspective
I Perspective 3: the contextual RL perspective
I Perspective 4: the sequential (or hierarchical) RL perspective

I Main focus: distinguishing skill learners from goal reachers

I Classification driven by the adressed problems

I Autotelic agents ∼ skill learner: absence of external reward

I Relation to contextual RL: a goal is a specific form of context
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Goal-Conditioned Reinforcement Learning

Perspective 1: the unsupervised RL perspective
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Goal-Conditioned Reinforcement Learning

Perspective 1: the unsupervised RL perspective

Unsupervised reinforcement learning: goal spaces

I The goal space can be absent, given, fixed and learned, or evolving

I The general objective is to cover the space of possible goals

I Downstream objective: pretrain before learning to reach specific, harder goals
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Goal-Conditioned Reinforcement Learning

Perspective 1: the unsupervised RL perspective

Discovering a diversity of skills

I General perspective: maximize goal space (or state space) coverage

I Or mutual information or empowerment

I Skill discovery → maximize diversity: vic, diayn, valor, dads

I The setter is used to generate a set of diverse trajectories

Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2005) Empowerment: A universal agent-centric measure of control. In 2005 IEEE

congress on evolutionary computation, volume 1, pages 128–135. IEEE
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Goal-Conditioned Reinforcement Learning

Perspective 2: the setter-solver perspective
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Goal-Conditioned Reinforcement Learning

Perspective 2: the setter-solver perspective

Reminder: GoalEnv vs Autotelic agents

I The setter-solver perspective distinguishes:

I a goal setter, which can be the agent or the environment
I a goal solver, which is a goal-conditioned policy learned with RL

I GoalEnv: when the setter is the environment

I Autotelic: when the setter is the agent

I The general objective is to endow an agent with fixed or open-ended goal
reaching capabilities
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Goal-Conditioned Reinforcement Learning

Perspective 2: the setter-solver perspective

The growth and diversity of solvers

I Many different solver algorithms, with growing architectures (Moore’s law)
I We can recognize image-based solvers (using CNN, ...)
I her is not so present
I Transformers and diffusion policies are coming (not shown)
I Beyond RL solvers: imitation learning, evolutionary methods...
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Goal-Conditioned Reinforcement Learning

Perspective 3: The contextual RL perspective
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Goal-Conditioned Reinforcement Learning

Perspective 3: The contextual RL perspective

Contextual RL

I In the same environment, the agent distinguishes various contexts
I The context distribution is unknown, it comes from the environment
I Instead of discrimination, the policy maximize the context-conditioned reward
I Precursor: [Kupcsik et al., 2013], Formalization: [Hallak et al., 2015]
I Recent instances: care [Eimer et al., 2021], space [Sodhani et al., 2021]

Kupcsik, A. G., Deisenroth, M. P., Peters, J., and Neumann, G. (2013) Data-efficient generalization of robot skills with

contextual policy search. In Twenty-Seventh AAAI Conference on Artificial Intelligence

Hallak, A., Di Castro, D., and Mannor, S. (2015) Contextual Markov decision processes. arXiv preprint arXiv:1502.02259

Eimer, T., Biedenkapp, A., Hutter, F., and Lindauer, M. (2021) Self-paced context evaluation for contextual reinforcement

learning. In International Conference on Machine Learning, pages 2948–2958. PMLR

Sodhani, S., Zhang, A., and Pineau, J. (2021) Multi-task reinforcement learning with context-based representations. In

International Conference on Machine Learning, pages 9767–9779. PMLR
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Goal-Conditioned Reinforcement Learning

Perspective 4: The sequential RL perspective
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Goal-Conditioned Reinforcement Learning

Perspective 4: The sequential RL perspective

Sequential setters

I Sequential setter: when performing a trajectory, the agent triggers a sequence of
behavior goals before it reaches the final desired goal

I Hierarchical setters are the most common sequential setters

I Specificity: there is a high level policy

I Counter-examples: planning with a graph or list of goals is not truly hierarchical

I Hierarchical reinforcement learning (HRL) is the focus of another lecture

I So just a quick overview here, from the GCRL perspective
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Goal-Conditioned Reinforcement Learning

Perspective 4: The sequential RL perspective

Unifying perspective: General (G)CRL template

I Green is fixed, blue is learned

I The goal setter can be fixed or learned

I In the setter-solver perspective, Ω is a goal

I In the unsupervised RL perspective, Ω is a skill

I In the contextual perspective, Ω is a context

I Our main focus will be the setter-solver perspective
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Goal-Conditioned Reinforcement Learning

Perspective 4: The sequential RL perspective

Upcoming classification

I Value of the setter-solver perspective: all setters of a class could be compared
using an identical solver

I We ignore the differences between solvers

I We distinguish six classes of setters:

I Non image-based skill discovery setters
I Image-based skill discovery setters
I Non image-based goal setters
I Image-based goal setters
I Non image-based sequential goal setters
I Image-based sequential goal setters

I For each class, we mention:

I The input type (state, object, image, or a combination)
I Evaluation criteria
I For goal reachers, the nature of the target goal set
I Sub-types of setters
I For image-based setters, the type of latent state encoder
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Goal-Conditioned Reinforcement Learning

Perspective 4: The sequential RL perspective

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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