Wrap-up, Take Home Messages

Olivier Sigaud

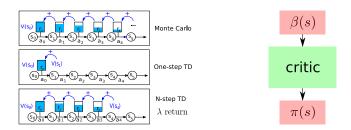
Sorbonne Université http://people.isir.upmc.fr/sigaud

Wrap-up

Key Policy Gradient Steps

- ▶ 1. Splitting the trajectory into steps: Markov Hypothesis required
- Key difference to Direct Policy Search methods
- Makes it possible to optimize trajectories using a gradient over policy params
- ▶ 2. Introducing the Q function
- Makes it possible to perform policy updates from a single step.
- ▶ Opens the way to the replay buffer, critic networks, partly off-policy methods
- ▶ 3. Using baselines
- ► Makes it possible to reduce variance
- ▶ When learning critics from bootstrap, becomes actor-critic

Bias-variance, Being Off-policy



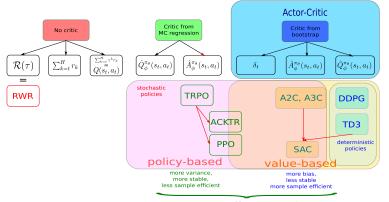
- ► Continuum between Monte Carlo methods and bootstrap methods
- ▶ Playing on the continuum helps finding the right bias-variance trade-off
- Being off-policy requires bootstrap
- ▶ No deep RL algorithm is truly off-policy, it's a matter of degree

The right distinction

- Off-policy versus on-policy is not so clear, as being off-policy is a matter of degree
- ▶ Being actor-critic, using a replay buffer does not lead to a clear-cut distinction (A2C blurs the classification)
- ► The right distinction is between value-based approaches (start from a critic) and policy-based approaches (start from the gradient on the policy)
- ► A2C, DQN, DDPG, TD3, SAC, TQC, DROQ are value-based
- ▶ REINFORCE, TRPO, ACKTR, PPO are policy-based

Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D. (2017) Bridging the gap between value and policy based reinforcement learning. Advances in neural information processing systems, 30

Final view



continuum using N-step return or λ return

► Even more recent: RLPD...

Chen, X., Wang, C., Zhou, Z., & Ross, K. (2021) Randomized ensembled double q-learning: Learning fast without a model. arXiv preprint arXiv:2101.05982

Hiraoka, T., Imagawa, T., Hashimoto, T., Onishi, T., & Tsuruoka, Y. (2021) Dropout Q:functions for doubly efficient reinforcement learning, arXiv preprint arXiv:2110.02034

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

Chen, X., Wang, C., Zhou, Z., and Ross, K. (2021).

Randomized ensembled double Q-learning: Learning fast without a model. arXiv preprint arXiv:2101.05982.

Hiraoka, T., Imagawa, T., Hashimoto, T., Onishi, T., and Tsuruoka, Y. (2021). Dropout Q-functions for doubly efficient reinforcement learning.

Dropout Q-functions for doubly efficient reinfor arXiv preprint arXiv:2110.02034.

Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D. (2017).

Bridging the gap between value and policy based reinforcement learning. Advances in neural information processing systems, 30.