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Key Policy Gradient Steps

1. Splitting the trajectory into steps: Markov Hypothesis required

Key difference to Direct Policy Search methods

Makes it possible to optimize trajectories using a gradient over policy params
2. Introducing the Q function

Makes it possible to perform policy updates from a single step

Opens the way to the replay buffer, critic networks, partly off-policy methods
3. Using baselines

Makes it possible to reduce variance
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When learning critics from bootstrap, becomes actor-critic
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:
Bias-variance, Being Off-policy
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» Continuum between Monte Carlo methods and bootstrap methods

» Playing on the continuum helps finding the right bias-variance trade-off
» Being off-policy requires bootstrap

» No deep RL algorithm is truly off-policy, it's a matter of degree
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The right distinction

» Off-policy versus on-policy is not so clear, as being off-policy is a matter of
degree

> Being actor-critic, using a replay buffer does not lead to a clear-cut
distinction (A2cC blurs the classification)

» The right distinction is between value-based approaches (start from a
critic) and policy-based approaches (start from the gradient on the policy)

> A2C, DQN, DDPG, TD3, SAC, TQC, DROQ are value-based
» REINFORCE, TRPO, ACKTR, PPO are policy-based

@ Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D. (2017) Bridging the gap between value and policy based reinforcement

learning. Advances in neural information processing systems, 30
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Final view
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more variance, more bias,
more stable, less stable
less sample efficient more sample efficient
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continuum using N-step return or A return

Even more recent: RLPD...
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Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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